Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 2Q
To determine
To find:
The rank of six plots according to the emf induced in the loop.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Compute the induced EMF in the small circular loop of wire centered at x=x0 and
y=y0 on x-y plane resulting from the time varying magnetic diplole directed into the direction of z
located on z axis at z=z0. The dipole moment of m of magnetic dipole is m = m, cos(ot) . The
radius of small circular loop of wire is r1.(r1<
HRW TP31-15P A square wire loop with 2.99 m sides is perpendicular to a uniform magnetic field, with half the area of the loop in the field as shown in Fig. 31-38. The loop contains a 20.0 V battery with negligible internal resistance. If the magnitude of the field varies with time according to B = 0.4110 0.780t, with B in teslas and t in
seconds, what is the net emf in the circuit and the direction of the current though the battery?
V
counterclockwise
O clockwise
B
20.0 V
Figure 31-38
=
Consider a circular wire loop that is getting warmer and is expanding
slightly, so that its diameter can be written as D : Dovt. There is a magnetic field
perpendicular to the plane of the loop that is increasing, so that this uniform B field has
strength B = Bo(1+kt), where tis time.
(a) Find the EMF induced in the wire loop and the current induced in the loop
assuming that its resistance is equal to R.
(b) Find the electric field inside the wire of the loop at the time t.
Chapter 30 Solutions
Fundamentals of Physics Extended
Ch. 30 - If the circular conductor in Fig. 30-21 undergoes...Ch. 30 - Prob. 2QCh. 30 - Prob. 3QCh. 30 - Prob. 4QCh. 30 - Prob. 5QCh. 30 - Prob. 6QCh. 30 - Prob. 7QCh. 30 - Prob. 8QCh. 30 - Prob. 9QCh. 30 - Prob. 10Q
Ch. 30 - Figure 30-31 shows three situations in which a...Ch. 30 - Figure 30-32 gives four situations in which we...Ch. 30 - Prob. 1PCh. 30 - A certain elastic conducting material is stretched...Ch. 30 - Prob. 3PCh. 30 - A wire loop of radius 12 cm and resistance 8.5 is...Ch. 30 - Prob. 5PCh. 30 - Figure 30-37a shows a circuit consisting of an...Ch. 30 - In Fig. 30-38, the magnetic flux through the loop...Ch. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - A rectangular coil of N turns and of length a and...Ch. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - GO In Fig. 30-42a, a uniform magnetic field B...Ch. 30 - GO A square wire loop with 2.00 m sides is...Ch. 30 - GO Figure 30-44a shows a wire that forms a...Ch. 30 - A small circular loop of area 2.00 cm2 is placed...Ch. 30 - Prob. 18PCh. 30 - ILW An electric generator contains a coil of 100...Ch. 30 - At a certain place, Earths magnetic field has...Ch. 30 - Prob. 21PCh. 30 - A rectangular loop area = 0.15 m2 turns in a...Ch. 30 - SSM Figure 30-47 shows two parallel loops of wire...Ch. 30 - Prob. 24PCh. 30 - GO Two long, parallel copper wires of diameter 2.5...Ch. 30 - GO For the wire arrangement in Fig. 30-49, a =...Ch. 30 - ILW As seen in Fig. 30-50, a square loop of wire...Ch. 30 - Prob. 28PCh. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - A loop antenna of area 2.00 cm2 and resistance...Ch. 30 - GO Figure 30-54 shows a rod of length L = 10.0 cm...Ch. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - Prob. 39PCh. 30 - Prob. 40PCh. 30 - A circular coil has a 10.0 cm radius and consists...Ch. 30 - Prob. 42PCh. 30 - Prob. 43PCh. 30 - Prob. 44PCh. 30 - Prob. 45PCh. 30 - Prob. 46PCh. 30 - Inductors in series. Two inductors L1 and L2 are...Ch. 30 - Prob. 48PCh. 30 - Prob. 49PCh. 30 - Prob. 50PCh. 30 - ILW The current in an RL circuit drops from 1.0 A...Ch. 30 - Prob. 52PCh. 30 - Prob. 53PCh. 30 - Prob. 54PCh. 30 - Prob. 55PCh. 30 - Prob. 56PCh. 30 - In Fig. 30-65, R = 15 , L = 5.0 H, the ideal...Ch. 30 - Prob. 58PCh. 30 - Prob. 59PCh. 30 - Prob. 60PCh. 30 - Prob. 61PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 63PCh. 30 - Prob. 64PCh. 30 - Prob. 65PCh. 30 - A circular loop of wire 50 mm in radius carries a...Ch. 30 - Prob. 67PCh. 30 - Prob. 68PCh. 30 - ILW What must be the magnitude of a uniform...Ch. 30 - Prob. 70PCh. 30 - Prob. 71PCh. 30 - Prob. 72PCh. 30 - Prob. 73PCh. 30 - Prob. 74PCh. 30 - Prob. 75PCh. 30 - Prob. 76PCh. 30 - Prob. 77PCh. 30 - Prob. 78PCh. 30 - SSM In Fig. 30-71, the battery is ideal and = 10...Ch. 30 - Prob. 80PCh. 30 - Prob. 81PCh. 30 - A uniform magnetic field B is perpendicular to the...Ch. 30 - Prob. 83PCh. 30 - Prob. 84PCh. 30 - Prob. 85PCh. 30 - Prob. 86PCh. 30 - Prob. 87PCh. 30 - Prob. 88PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 90PCh. 30 - Prob. 91PCh. 30 - Prob. 92PCh. 30 - Prob. 93PCh. 30 - A long cylindrical solenoid with 100 turns/cm has...Ch. 30 - Prob. 95PCh. 30 - A square loop of wire is held in a uniform 0.24 T...Ch. 30 - Prob. 97PCh. 30 - The inductance of a closely wound coil is such...Ch. 30 - The magnetic field in the interstellar space of...Ch. 30 - Prob. 100PCh. 30 - A toroid has a 5.00 cm square cross section, an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A conducting single-turn circular loop with a total resistance of 5.00 is placed in a time-varying magnetic field that produces a magnetic flux through the loop given by B = a + bt2 ct3, where a = 4.00 Wb, b = 11.0 Wb/s2, and c = 6.00 Wb/s3. B is in webers, and t is in seconds. What is the maximum current induced in the loop during the time interval t = 0 to t = 3.50 s?arrow_forwardA flat, square coil of 20 turns that has sides of length 15.0 cm is rotating in a magnetic field of strength 0.050 T. If tlie maximum emf produced in die coil is 30.0 mV, what is the angular velocity of the coil?arrow_forwardThe conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart. The system is in a uniform magnetic field of strength 0.75 T, which is directed into the page. The resistances of the rod and the rails are negligible, but the section PQ has a resistance of 0.25 . (a) What is the emf (including its sense) induced in the rod when it is moving to tire right with a speed of 5.0 m/s? (b) What force is required to keep the rod moving at this speed? (c) What is the rate at which work is done by this force? (d) What is the power dissipated in the resistor?arrow_forward
- The wire loop in Figure (a) is subjected, in turn, to six uniform magnetic fields, each directed parallel to the z axis. Figure (b) gives the z components B, of the fields versus time t. (Plots 1 and 3 are parallel; so are plots 4 and 6.) Rank the six plots according to the emf induced in the loop, greatest clockwise emf first, greatest counterclockwise emf last. If multiple choices rank equally, use the same rank for each, then exclude the intermediate ranking (i.e. if objects A, B, and C must be ranked, and A and B must both be ranked first, the ranking would be A:Greatest, B:Greatest, C:Third greatest). If all choices rank equally, rank each as 'Greatest. (a) (b) Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 6 >arrow_forwardA long cylindrical solenoid with 100 turns/cm has a radius of 1.6 cm. Assume that the magnetic field it produces is parallel to its axis and is uniform in its interior. (a) What is its inductance per meter of length? (b) If the current changes at the rate of 13 A/s, what emf is induced per meter?arrow_forwardIn the circuit shown in the accompanying figure, the rod slides along the conducting rails at a constant velocity v → . The velocity is in the same plane as the rails and directed at an angle θ to them. A uniform magnetic field B → is directed out of the page. What is the emf induced in the rod?arrow_forward
- The coil in the picture below is rotating with a constant angular speed of 320 rad/s in a uniform magnetic field of 0.200 T. The diameter of the coil is 10 cm. Calculate the magnitude (ie., a positive value) of the maximum value of the induced current, in mA, if the resistance of the coil is 20 Q. B.arrow_forwardA uniform magnetic field B is perpendicular to the plane of a circular wire loop of radius r and with resistance R. The magnitude of the field varies with time according to B = B0e-t/T, where B0and T are constants (T is time constant). (a) Find an expresssion for the emf induced in the loop as a function of time. (b) If the loop lies in the plane of the page and the magnetic field initially points out of the page, then what is the magnitude and direction of the induced current in the loop, i.e., is it clockwise, counter-clockwise, or is there no current induced in the loop? Include a diagram for this situation.arrow_forwardA conducting rod is pulled horizontally with constant force along a set of rails separated by L = 11 cm. A uniform magnetic field B = 0.3 T is directed out of the page. There is no friction between the rod and the rails, and the rod moves with constant velocity v = 3 m/s. If the resistance of the system is 0.75 № calculate the induced emf and current in the loop. Assign clockwise to be the positive direction for Emf. B L The induced emf, Emf = = ● The induced current, i = The force, F = = The power, PF = Units kg At what rate does thermal energy releases in the rod? The power, PR What force is required to maintain the constant velocity of the rod? At what rate does this force do work? Units Select an answer ✓ Units Select an answer ✓ Units Select an answer X Units Select an answer ✓arrow_forward
- A single circular loop of wire of radius 0.46m is positioned in a uniform magnetic field of 0.47T that points out of the page. What is the magnitude of the average EMF induced in the loop if it's orientation changes from being in the plane of the page to out of/into the page over a time period of 0.58seconds?arrow_forwardA circular loop of wire of radius 12.0 cm is placed in a magnetic field directed perpendicular to the plane of the loop as shown. If the field decreases at the rate of 0.050 0 T/s in some time interval, find the magnitude of the emf induced in the loop during this interval.arrow_forwardA long thin solenoid has 808 turns per meter and radius 3.00cm. The current in the solenoid is increasing at a rate of 60A/s. What is the magnitude of the induced electric field (in V/m) at a point near the center of the solenoid and 0.8cm from its axis?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning