Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 5P
To determine
To find:
The magnitude of the current induced in the loop at time
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 6: Two power lines, line 1 and line 2, both of length L
88 m, are strung east-west between two towers. line 1 is
r12 1.1 m directly above line 2. The current in both power lines is IL- 77 A to the west. Assume the power lines are straight and you
can use the approximation ri2 << L
Randomized Variables
LL 88 m
12 1.1 m
IL-77 A
A Part (a) Find the magnitude of the magnetic field B21, in teslas, produced by line 1 at
Part (b) What is the direction of the magnetic field produced by line 1 at line 2?
Part (c) Calculate the magnitude of the magnetic force F21, in newtons, that the
line 2
South.
Correct!
current in line 1 exerts on line 2.
Part (d) Assume a typical power line has a mass of 890 kg per 1000 m. How many
times larger would the current in both lines have to be for the magnetic force on the line to
balance the force of gravity?
tan()
acos()
sinh0)
sin
cos(0)
cotanO asin acos
4 5 6
atan()acotan(0
coshO
cotanhO
0
Degrees O Radians
BACKSPACE
CLEAR
Submit
Hint
I give up!
26 O In Fig. 29-54a, wire 1 consists of a circular arc and two
radial lengths; it carries current = 0.50 A in the direction
indicated. Wire 2, shown in cross section, is long, straight, and per-
pendicular to the plane of the figure. Its distance from the center of
the arc is equal to the radius R of the arc, and it carries a current iz
that can be varied. The two currents set up a net magnetic field B at
the center of the arc. Figure 29-54b gives the square of the field's
magnitude B plotted versus the square of the current iB. The verti-
cal scale is set by B; = 10.0 x 10-10 T?. What angle is subtended by
the arc?
B?
(A)
(a)
(b)
(L. 01-01) A
Two long, parallel wires, each having a mass per unit length of 25.0 g /m, are supported in a horizontal plane by strings l = 5.00 cm long. When both wires carry the same current I, the wires repel each other so that the angle ? between the supporting strings is 10.0 °. Find the magnitude of the current. (Your result must be in units of Amperes. Include 1 digit after the decimal point and maximum of 4% of error is accepted in your answer.Take gravitational acceleration g = 9.81 m /s 2, vacuum permeability µ 0 = 4π x 10 -7 T /A 2 and π = 3.14.)
Chapter 30 Solutions
Fundamentals of Physics Extended
Ch. 30 - If the circular conductor in Fig. 30-21 undergoes...Ch. 30 - Prob. 2QCh. 30 - Prob. 3QCh. 30 - Prob. 4QCh. 30 - Prob. 5QCh. 30 - Prob. 6QCh. 30 - Prob. 7QCh. 30 - Prob. 8QCh. 30 - Prob. 9QCh. 30 - Prob. 10Q
Ch. 30 - Figure 30-31 shows three situations in which a...Ch. 30 - Figure 30-32 gives four situations in which we...Ch. 30 - Prob. 1PCh. 30 - A certain elastic conducting material is stretched...Ch. 30 - Prob. 3PCh. 30 - A wire loop of radius 12 cm and resistance 8.5 is...Ch. 30 - Prob. 5PCh. 30 - Figure 30-37a shows a circuit consisting of an...Ch. 30 - In Fig. 30-38, the magnetic flux through the loop...Ch. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - A rectangular coil of N turns and of length a and...Ch. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - GO In Fig. 30-42a, a uniform magnetic field B...Ch. 30 - GO A square wire loop with 2.00 m sides is...Ch. 30 - GO Figure 30-44a shows a wire that forms a...Ch. 30 - A small circular loop of area 2.00 cm2 is placed...Ch. 30 - Prob. 18PCh. 30 - ILW An electric generator contains a coil of 100...Ch. 30 - At a certain place, Earths magnetic field has...Ch. 30 - Prob. 21PCh. 30 - A rectangular loop area = 0.15 m2 turns in a...Ch. 30 - SSM Figure 30-47 shows two parallel loops of wire...Ch. 30 - Prob. 24PCh. 30 - GO Two long, parallel copper wires of diameter 2.5...Ch. 30 - GO For the wire arrangement in Fig. 30-49, a =...Ch. 30 - ILW As seen in Fig. 30-50, a square loop of wire...Ch. 30 - Prob. 28PCh. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - A loop antenna of area 2.00 cm2 and resistance...Ch. 30 - GO Figure 30-54 shows a rod of length L = 10.0 cm...Ch. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - Prob. 39PCh. 30 - Prob. 40PCh. 30 - A circular coil has a 10.0 cm radius and consists...Ch. 30 - Prob. 42PCh. 30 - Prob. 43PCh. 30 - Prob. 44PCh. 30 - Prob. 45PCh. 30 - Prob. 46PCh. 30 - Inductors in series. Two inductors L1 and L2 are...Ch. 30 - Prob. 48PCh. 30 - Prob. 49PCh. 30 - Prob. 50PCh. 30 - ILW The current in an RL circuit drops from 1.0 A...Ch. 30 - Prob. 52PCh. 30 - Prob. 53PCh. 30 - Prob. 54PCh. 30 - Prob. 55PCh. 30 - Prob. 56PCh. 30 - In Fig. 30-65, R = 15 , L = 5.0 H, the ideal...Ch. 30 - Prob. 58PCh. 30 - Prob. 59PCh. 30 - Prob. 60PCh. 30 - Prob. 61PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 63PCh. 30 - Prob. 64PCh. 30 - Prob. 65PCh. 30 - A circular loop of wire 50 mm in radius carries a...Ch. 30 - Prob. 67PCh. 30 - Prob. 68PCh. 30 - ILW What must be the magnitude of a uniform...Ch. 30 - Prob. 70PCh. 30 - Prob. 71PCh. 30 - Prob. 72PCh. 30 - Prob. 73PCh. 30 - Prob. 74PCh. 30 - Prob. 75PCh. 30 - Prob. 76PCh. 30 - Prob. 77PCh. 30 - Prob. 78PCh. 30 - SSM In Fig. 30-71, the battery is ideal and = 10...Ch. 30 - Prob. 80PCh. 30 - Prob. 81PCh. 30 - A uniform magnetic field B is perpendicular to the...Ch. 30 - Prob. 83PCh. 30 - Prob. 84PCh. 30 - Prob. 85PCh. 30 - Prob. 86PCh. 30 - Prob. 87PCh. 30 - Prob. 88PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 90PCh. 30 - Prob. 91PCh. 30 - Prob. 92PCh. 30 - Prob. 93PCh. 30 - A long cylindrical solenoid with 100 turns/cm has...Ch. 30 - Prob. 95PCh. 30 - A square loop of wire is held in a uniform 0.24 T...Ch. 30 - Prob. 97PCh. 30 - The inductance of a closely wound coil is such...Ch. 30 - The magnetic field in the interstellar space of...Ch. 30 - Prob. 100PCh. 30 - A toroid has a 5.00 cm square cross section, an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Kindly answer please. Needed ASAP. Thank you.arrow_forwardA wire consists of a vertical wire whose ends are connected to a circular wire. Suppose that the vertical wire has end points at rд = −2 cos 60° î+ Rsin 60° ĵ and rß = −R cos 60° î - R sin 60° ĵ, with the positive current I flowing from point A to point B. On the other hand, the circular wire has a radius R centered at the origin and passes through points A, B, and C, with the position rc = Rî. If a positive current I flows along the wire, passing through the points A, B, C, and back to A, use Biot-Savart law to find the resulting magnetic field at point D, where rp = zk. Note: you must illustrate the problem, your variables, and your coordinate systems.arrow_forwardA portion of a long, cylindrical coaxial cable is shown in the figure below. An electrical current I = 3.0 amps flows down the center conductor, and this same current is returned in the outer conductor. Assume the current is distributed uniformly over the cross sections of the two parts of the cable. The values of the radii in the figure are r1 = 1.5 mm, r2 = 4.0 mm, and r3 = 7.0 mm. Using Ampere’s Law, find the magnitude of the magnetic field at the following distances from the center of the inner wire: a. 1.0 mm. b. 3.0 mm. c. 5.5 mm. d. 9.0 mm.arrow_forward
- A closed curve encircles several conductors. The line integral PB.dL around this curve is 3,83x104 T.m (a) What is the net current in the conductors? (b) If you were to integrate around the curve in the opposite direction, what would be the value of the line integral? Select one: lenci=D 305 A, 0.0 T.m lencl = 502 A, -3.83 x 10 4T.m lenci = 502 A, -7.66 x 104 T.m lencl = 600 A, -7.66 x 104T.m lencl = 305 A, -3.83 x 10 4 T.m lencl = 502 A, 0.0 T.m %3Darrow_forwardThere are 163 windings around a cylinder made of a non-magnetic material. The cylinder has a radius r 4.1 cm and a length L 7 m. The resistance of a sufficiently long cylinder (r << L) is R= 22. The applied voltage is E, = 5 V at the initial moment (t = 0). At the time t = 8s what is the value of the voltage E, in units of mega-volts, that must be applied to the ends of the solenoid, in order for the current to increase directly proportional with time t? (Take 4o = 4 x 10 7T- m/A and r= 3.14.) O 3.18 O 18.44 O 9.54 O 6.36 14.31arrow_forwardA metal wire is formed into a circle with a diameter of 10 cm, placed on a horizontal plane. Just above the center of the circle is a straight metal wire, infinitely long, parallel to the plane of the circle. The distance between the circular wire and the straight wire is 5 cm, and each wire is supplied with a direct current of 5 Amperes. The direction of current in the circular wire is rotating right, and the direction of current in the straight wire is from right to left Graph the direction of the magnetic field vector at the center of the circle (called point A)!arrow_forward
- Problem 5: Two power lines, line 1 and line 2, both of length LL = 74 m, are strung east-west between two towers. line 1 is r12 = 1.l m directly above line 2. The current in both power lines is L = 72 A to the west. Assume the power lines are straight and you can use the approximation r12 « LL. %3D Randomized Variables LL = 74 m r12 = 1.1 m IL = 72 A || Part (a) Find the magnitude of the magnetic field B21, in teslas, produced by line 1 at line 2. Part (b) What is the direction of the magnetic field produced by line 1 at line 2? V Correct! South. Part (c) Calculate the magnitude of the magnetic force F21, in newtons, that the current in line 1 exerts on line 2. Part (d) Assume a typical power line has a mass of 890 kg per 1000 m. How many times larger would the current in both lines have to be for the magnetic force on the line to balance the force of gravity? I/IL = sin() cos() tan() 7 8 9 НOME cotan() asin() acos() E 1^A 4 5 6 atan() acotan() sinh() 3 cosh() tanh() cotanh() + END…arrow_forwardA current filament of 10 A in the +X direction lies along x-axis, and a current sheet, K=2 ay A/m is located at z=5m. Determine H at the point (2, 4, 3). 1 ax + 0.6 ay - 2 az A/m 0.07ax + 2 az A/m 3ax +0.0 2 az A/m -1ax - 0.6 ay + 0.8 az A/marrow_forwardIn the accompanying figure, the rails, connecting end piece, and rod all have a resistance per unit length of 2.0 2/cm. The rod moves to the left at v = 3.0 m/s. If B = 0.75T everywhere in the region, what is the current in the circuit (a) when a = 8.0cm? (b) when a = 5.0 cm? Specify also the sense of the current flow. 4.0 cmarrow_forward
- (a) The figure below shows two parallel conducting rails 15.2 cm apart, connected by a resistor with resistance R₂ = 5.00 Q. Two metal rods with resistances R₁ = 11.40 and R₂ = 15.0 (2 slide along the rails with negligible friction. Rod R₁ slides to the left at constant speed v₁ = 4.00 m/s, while rod R₂ slides at speed v₂ = 2.00 m/s. The rods and rails are in the presence of a uniform magnetic field pointing into the page, perpendicular to the plane of the rails, with a magnitude of Bin = 0.0100 T. +5 x x x x x x x x x x x x x x x x x x x x x x x x x x upward x x x ---Select--- X * x x x x x x x x Rg x x x x x R₁ R₂ What are the magnitude (in μA) and direction of the current through resistor R₂? μA magnitude direction x x x x (b) What If? What are the magnitude (in μA) and direction of the current through resistor R. if the rods move inward, instead of outward, with the same speeds as in part (a)? μA magnitude directionarrow_forwardIn Fig. 29-64, five long parallel wires in an xy plane are separated by distance d = 50.0 cm. The currents into the page are i1 = 2.00 A, i3 = 0.250 A, i4 = 4.00 A, and i5 = 2.00 A; the current out of the page is i2 = 4.00 A. What is the magnitude of the net force per unit length acting on wire 3 due to the currents in the other wires?arrow_forwardA solenoid of 400 turns and length 6 cm, and radius 2 cm is surrounded by a single coaxial loop of radius 4 cm, which has a resistance 2. The current flows in a clockwise direction, looking toward the solenoid from left. The current in the solenoid starts from zero and increases uniformly at the rate of 1 amperes per second, until it reaches a current of 10 amperes which remains steady thereafter (Use expressions for very long solenoid). a. What is the rate of change of magnetic field within the solenoid during the current change in this problem. b. What is the rate of change of magnetic flux within the solenoid during this change. c. Using Faraday’s law (or Lenz’s law), find the magnitude and direction of current generated in the outer loop. d. What is the magnetic flux through the single coil when a steady current 10A flows through the solenoid.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill