Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 60P
To determine
To find:
a) Inductance of toroid
b) Inductive time constant of toroid.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A wooden toroidal core with a square cross section has an inner radius of 10 cm and an outer radius of 12 cm. It is wound with one layer of wire (of diameter 1.0 mm and resistance per meter 0.020 ohm/m).What are (a) the inductance and (b) the inductive time constant of the resulting toroid? Ignore the thickness of the insulation on the wire.
A wooden toroidal core with a square cross section has an inner radius of 15 cm and an outer radius of 19 cm. It is wound with one
layer of wire (of diameter 1.2 mm and resistance per meter 0.018 Q/m). What are (a) the inductance and (b) the inductive time
constant of the toroid? Ignore the thickness of the insulation on the wire.
(a) Number
Units
(b) Number
Units
A 10.00 μF capacitor C is initially charged to a voltage V of 10.00 (V). It is then connected in series with an inductor L. Charge and current oscillations ensue.
(a) What is the total energy U of the circuit?
(b) If the maximum current in the inductor is Im = 0.500 (A), then what is the inductance L? What is the charge Q on the positive plate of the capacitor when the current reaches its maximum value Im?
(c) What is the angular frequency of the charge oscillations?
Chapter 30 Solutions
Fundamentals of Physics Extended
Ch. 30 - If the circular conductor in Fig. 30-21 undergoes...Ch. 30 - Prob. 2QCh. 30 - Prob. 3QCh. 30 - Prob. 4QCh. 30 - Prob. 5QCh. 30 - Prob. 6QCh. 30 - Prob. 7QCh. 30 - Prob. 8QCh. 30 - Prob. 9QCh. 30 - Prob. 10Q
Ch. 30 - Figure 30-31 shows three situations in which a...Ch. 30 - Figure 30-32 gives four situations in which we...Ch. 30 - Prob. 1PCh. 30 - A certain elastic conducting material is stretched...Ch. 30 - Prob. 3PCh. 30 - A wire loop of radius 12 cm and resistance 8.5 is...Ch. 30 - Prob. 5PCh. 30 - Figure 30-37a shows a circuit consisting of an...Ch. 30 - In Fig. 30-38, the magnetic flux through the loop...Ch. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - A rectangular coil of N turns and of length a and...Ch. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - GO In Fig. 30-42a, a uniform magnetic field B...Ch. 30 - GO A square wire loop with 2.00 m sides is...Ch. 30 - GO Figure 30-44a shows a wire that forms a...Ch. 30 - A small circular loop of area 2.00 cm2 is placed...Ch. 30 - Prob. 18PCh. 30 - ILW An electric generator contains a coil of 100...Ch. 30 - At a certain place, Earths magnetic field has...Ch. 30 - Prob. 21PCh. 30 - A rectangular loop area = 0.15 m2 turns in a...Ch. 30 - SSM Figure 30-47 shows two parallel loops of wire...Ch. 30 - Prob. 24PCh. 30 - GO Two long, parallel copper wires of diameter 2.5...Ch. 30 - GO For the wire arrangement in Fig. 30-49, a =...Ch. 30 - ILW As seen in Fig. 30-50, a square loop of wire...Ch. 30 - Prob. 28PCh. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - A loop antenna of area 2.00 cm2 and resistance...Ch. 30 - GO Figure 30-54 shows a rod of length L = 10.0 cm...Ch. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - Prob. 39PCh. 30 - Prob. 40PCh. 30 - A circular coil has a 10.0 cm radius and consists...Ch. 30 - Prob. 42PCh. 30 - Prob. 43PCh. 30 - Prob. 44PCh. 30 - Prob. 45PCh. 30 - Prob. 46PCh. 30 - Inductors in series. Two inductors L1 and L2 are...Ch. 30 - Prob. 48PCh. 30 - Prob. 49PCh. 30 - Prob. 50PCh. 30 - ILW The current in an RL circuit drops from 1.0 A...Ch. 30 - Prob. 52PCh. 30 - Prob. 53PCh. 30 - Prob. 54PCh. 30 - Prob. 55PCh. 30 - Prob. 56PCh. 30 - In Fig. 30-65, R = 15 , L = 5.0 H, the ideal...Ch. 30 - Prob. 58PCh. 30 - Prob. 59PCh. 30 - Prob. 60PCh. 30 - Prob. 61PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 63PCh. 30 - Prob. 64PCh. 30 - Prob. 65PCh. 30 - A circular loop of wire 50 mm in radius carries a...Ch. 30 - Prob. 67PCh. 30 - Prob. 68PCh. 30 - ILW What must be the magnitude of a uniform...Ch. 30 - Prob. 70PCh. 30 - Prob. 71PCh. 30 - Prob. 72PCh. 30 - Prob. 73PCh. 30 - Prob. 74PCh. 30 - Prob. 75PCh. 30 - Prob. 76PCh. 30 - Prob. 77PCh. 30 - Prob. 78PCh. 30 - SSM In Fig. 30-71, the battery is ideal and = 10...Ch. 30 - Prob. 80PCh. 30 - Prob. 81PCh. 30 - A uniform magnetic field B is perpendicular to the...Ch. 30 - Prob. 83PCh. 30 - Prob. 84PCh. 30 - Prob. 85PCh. 30 - Prob. 86PCh. 30 - Prob. 87PCh. 30 - Prob. 88PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 90PCh. 30 - Prob. 91PCh. 30 - Prob. 92PCh. 30 - Prob. 93PCh. 30 - A long cylindrical solenoid with 100 turns/cm has...Ch. 30 - Prob. 95PCh. 30 - A square loop of wire is held in a uniform 0.24 T...Ch. 30 - Prob. 97PCh. 30 - The inductance of a closely wound coil is such...Ch. 30 - The magnetic field in the interstellar space of...Ch. 30 - Prob. 100PCh. 30 - A toroid has a 5.00 cm square cross section, an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the circuit in Figure P32.18, taking = 6.00 V, L = 8.00 mH, and R = 4.00 . (a) What is the inductive time constant of the circuit? (b) Calculate the current in the circuit 250 s after the switch is closed. (c) What is the value of the final steady-state current? (d) After what time interval does the current reach 80.0% of its maximum value?arrow_forwardWhat is the self-inductance per meter of a coaxial cable whose inner radius is 0.50 mm and whose outer radius is 4.00 mm?arrow_forwardThe current I(t) through a 5.0-mH inductor varies with time, as shown below. The resistance of the inductor is 5.0 . Calculate the voltage across the inductor at t = 2.0 ms, r = 4.0 ms, and t = 8.0 ms.arrow_forward
- A resistor and an inductor are wired in series with an ideal battery. The inductance of the inductor is 8.0 mH, and the resistance of the resistor is 2.0. Assume the battery is connected to the resistor and the inductor at t=0. How long does it take the current to reach half its final, steady value?arrow_forwardA 521-turn solenoid has a radius of 7.00 mm and an overall length of 15.0 cm. a) What is its inductance? b) If the solenoid is connected in series with a 2.50-Ω resistor and a battery, what is the time constant of the circuit?arrow_forwardA 510-turn solenoid has a radius of 7.95 mm and an overall length of 13.2 cm. (a) What is its inductance? mH (b) If the solenoid is connected in series with a 2.50-N resistor and a battery, what is the time constant of the circuit? msarrow_forward
- A toroidal inductor with an inductance of 90.0 mH encloses a volume of 0.0200 m3. If the average energy density in the toroid is 70.0 J/m3, what is the current through the inductor?arrow_forwardIn a series RL circuit, the resistance is 135 ohms, the inductance is 120 x 10-3 H, and the source of electromotive force is ξ. After some time, the current in the circuit reaches its maximum value, and at this time the energy stored in the inductor is 230 x 10-3 J. a) What is the value of ξ? b) Next, we remove the electromotive force source and connect the inductor directly to the resistor. How long will it take for the energy stored in the inductor to decrease to half of its initial value?arrow_forwardIn and L-C circuit, C=3.19 microFarads and L=81.0 mH. During the oscillations the maximum current in the inductor is 0.855 mA. What is the magnitude of the charge on the capacitor at an instant when the current in the inductor has magnitude 0.501 mA? Express your answer in Coloumbs.arrow_forward
- An inductor has a current I(t) = (0.480 A) cos[(260 s-1)t] flowing through it. If the maximum emf %3D across the inductor is equal to 0.530 V, what is the self-inductance of the inductor, in mH? A 110-V hair dryer is rated at 1200 W. What current will it draw when operating from a 110-V electrical outlet? A small glass bead has been charged to 4.5 nC. What is the magnitude of the electric field 2.0 cm from the center of the bead? (k = 1/4nE 0 = 8.99 x 10° N. m2/C2) %3Darrow_forwardAn inductor that has an inductance of 19.0 H and a resistance of 26.0 N is connected across a 100 V battery. (a) What is the rate of increase of the current at t = 0 s? A/s (b) What is the rate of increase of the current at t = 1.70 s? A/sarrow_forwardThere is a tank of width and length of w and a height of 0.6 m. This tank is wrapped around with wires that produce an inductance due to windings. Let the inductance be Lo = 3 H. when the tank is empty with magnetic permeability constant of lo. Let the inductance be L = 14 H when the tank is full with magnetic permeability constant of Klg. Find h. in units of cm, when the tank is filled with liquid at height h and the inductance is L = 9H. O 13.09 O 6.55 O 39.27 O 32.73 O 22.91arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning