Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 30, Problem 58P
To determine
To find:
Expression for the battery emf as a function of t.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
59 In Fig. 27-51, R₁ = 20.0 2, R₂ = 10.0 2, and the ideal bat-
tery has emf & = 120 V. What is the current at point a if we close
(a) only switch S₁, (b) only switches S₁ and S₂, and (c) all three
switches?
Figure 27-51 Problem 59.
a S₁
S₂
S3
18 R₁ R₁
R₁
I'm
LwIw Im
R₁
R₂
R₂
In an A. C. circuit, the flowing current is
I = 5 sin (100 t - t/2) A and the potential
difference is V = 200 sin (100 t)V. The power
consumption is equal to
%3D
**.26 o For the wire arrangement
in Fig. 30-49, a = 12.0 cm and b
16.0 cm. The current in the long
straight wire is i = 4.502 – 10.01,
where i is in amperes and t is in sec-
onds. (a) Find the emf in the square
loop at t= 3.00 s. (b) What is the
%3!
Figure 30-49 Problem 26.
direction of the induced current in
the loop?
Chapter 30 Solutions
Fundamentals of Physics Extended
Ch. 30 - If the circular conductor in Fig. 30-21 undergoes...Ch. 30 - Prob. 2QCh. 30 - Prob. 3QCh. 30 - Prob. 4QCh. 30 - Prob. 5QCh. 30 - Prob. 6QCh. 30 - Prob. 7QCh. 30 - Prob. 8QCh. 30 - Prob. 9QCh. 30 - Prob. 10Q
Ch. 30 - Figure 30-31 shows three situations in which a...Ch. 30 - Figure 30-32 gives four situations in which we...Ch. 30 - Prob. 1PCh. 30 - A certain elastic conducting material is stretched...Ch. 30 - Prob. 3PCh. 30 - A wire loop of radius 12 cm and resistance 8.5 is...Ch. 30 - Prob. 5PCh. 30 - Figure 30-37a shows a circuit consisting of an...Ch. 30 - In Fig. 30-38, the magnetic flux through the loop...Ch. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - A rectangular coil of N turns and of length a and...Ch. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - GO In Fig. 30-42a, a uniform magnetic field B...Ch. 30 - GO A square wire loop with 2.00 m sides is...Ch. 30 - GO Figure 30-44a shows a wire that forms a...Ch. 30 - A small circular loop of area 2.00 cm2 is placed...Ch. 30 - Prob. 18PCh. 30 - ILW An electric generator contains a coil of 100...Ch. 30 - At a certain place, Earths magnetic field has...Ch. 30 - Prob. 21PCh. 30 - A rectangular loop area = 0.15 m2 turns in a...Ch. 30 - SSM Figure 30-47 shows two parallel loops of wire...Ch. 30 - Prob. 24PCh. 30 - GO Two long, parallel copper wires of diameter 2.5...Ch. 30 - GO For the wire arrangement in Fig. 30-49, a =...Ch. 30 - ILW As seen in Fig. 30-50, a square loop of wire...Ch. 30 - Prob. 28PCh. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - A loop antenna of area 2.00 cm2 and resistance...Ch. 30 - GO Figure 30-54 shows a rod of length L = 10.0 cm...Ch. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - Prob. 39PCh. 30 - Prob. 40PCh. 30 - A circular coil has a 10.0 cm radius and consists...Ch. 30 - Prob. 42PCh. 30 - Prob. 43PCh. 30 - Prob. 44PCh. 30 - Prob. 45PCh. 30 - Prob. 46PCh. 30 - Inductors in series. Two inductors L1 and L2 are...Ch. 30 - Prob. 48PCh. 30 - Prob. 49PCh. 30 - Prob. 50PCh. 30 - ILW The current in an RL circuit drops from 1.0 A...Ch. 30 - Prob. 52PCh. 30 - Prob. 53PCh. 30 - Prob. 54PCh. 30 - Prob. 55PCh. 30 - Prob. 56PCh. 30 - In Fig. 30-65, R = 15 , L = 5.0 H, the ideal...Ch. 30 - Prob. 58PCh. 30 - Prob. 59PCh. 30 - Prob. 60PCh. 30 - Prob. 61PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 63PCh. 30 - Prob. 64PCh. 30 - Prob. 65PCh. 30 - A circular loop of wire 50 mm in radius carries a...Ch. 30 - Prob. 67PCh. 30 - Prob. 68PCh. 30 - ILW What must be the magnitude of a uniform...Ch. 30 - Prob. 70PCh. 30 - Prob. 71PCh. 30 - Prob. 72PCh. 30 - Prob. 73PCh. 30 - Prob. 74PCh. 30 - Prob. 75PCh. 30 - Prob. 76PCh. 30 - Prob. 77PCh. 30 - Prob. 78PCh. 30 - SSM In Fig. 30-71, the battery is ideal and = 10...Ch. 30 - Prob. 80PCh. 30 - Prob. 81PCh. 30 - A uniform magnetic field B is perpendicular to the...Ch. 30 - Prob. 83PCh. 30 - Prob. 84PCh. 30 - Prob. 85PCh. 30 - Prob. 86PCh. 30 - Prob. 87PCh. 30 - Prob. 88PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 90PCh. 30 - Prob. 91PCh. 30 - Prob. 92PCh. 30 - Prob. 93PCh. 30 - A long cylindrical solenoid with 100 turns/cm has...Ch. 30 - Prob. 95PCh. 30 - A square loop of wire is held in a uniform 0.24 T...Ch. 30 - Prob. 97PCh. 30 - The inductance of a closely wound coil is such...Ch. 30 - The magnetic field in the interstellar space of...Ch. 30 - Prob. 100PCh. 30 - A toroid has a 5.00 cm square cross section, an...
Knowledge Booster
Similar questions
- (a) In the figure what value must R have if the current in the circuit is to be 1.3 mA? Take ₁ = 2.7 V, 8₂ = 5.3 V, and r₁= r₂ = 3.9 Q. (b) What is the rate at which thermal energy appears in R? ww www. (b) Number 12₂ (a) Number 1992.2 i 2.6 Units Units Ω W <arrow_forward**57 Go In Fig. 30-63, R = 15 N, L = 5.0 H, the ideal battery has & = 10 V, and the fuse in the upper branch is an ideal 3.0 A fuse. It has Fuse R zero resistance as long as the cur- rent through it remains less than 3.0 L. A. If the current reaches 3.0 A, the fuse “blows" and thereafter has in- finite resistance. Switch S is closed Fig. 30-63 Problem 57. at time t= 0. (a) When does the fuse blow? (Hint: Equation 30-41 does not apply. Rethink Eq. 30-39.) (b) Sketch a graph of the current i through the inductor as a function of time. Mark the time at which the fuse blows.arrow_forwardThe switch in the given figure has been in position A for a long time. Assume the switch moves instantaneously from A to B at t= 0. Find v for t> 0. Assume R = 4 kN. 5 kΩ Α B 10 μF 40 V R The voltage v(t) v(0) e-1/ , where v(0) V and T= S.arrow_forward
- A circuit conducting loop lies in the :xy-plane as shown in Figure .The loop has a radius of 0.2m and resistance R = 4 Q. If B 40 sin 104 t az mWb/m2, find the currrent.arrow_forwardwhen the wire at A slides across the top and bottom rails at constant velocity Vo. (a) When the wire reaches B so that the area enclosed by the circuit is doubled, determine the ratio of the new emf to the original emf, E/Eo. (b) If the wire's speed is doubled so that v = 2vo, determine the ratio E/Eo- R x x A B Xx x x x x x X x x xi x X x x x x x x x x > x x x x x x >arrow_forwardA circuit conducting loop lies in the xy-plane as shown. The loop has a radius of 0.2 m and resistance R = 4 Ω. If B = 40 sin 104 taz mWb/m2, find the currrent.arrow_forward
- Consider the RL circuit in the figure with R=10.00 Ω, L1=1.80 H, L2=3.90 H, and V=5.0 V. At time t=0, the switch is closed to connect the circuit to a constant emf. How long (in seconds) does it take for the current to reach a value of Imax/2.71828 of its maximum value, where Imax is the maximum current through the circuit?arrow_forwardA spherical surfaces r= 3 m and r=5 m are perfectly conducting and the total current passing radially outward through the medium between the two surfaces is (3 A) dc calculate: a) The voltage and the resistance between the spheres and (E) in the region between them, if a conducting material has o = 0.05 $/m is present for 3arrow_forwardHow long would it take, following the removal of the battery, for the potential difference across the resistor in an RL circuit (with L = 2.00 H, R = 3.00 ohm) to decay to 10.0% of its initial value?arrow_forwardTwo circuits contain an emf produced by a moving metal rod, like that shown in the drawing. The speed of the rod is the same in each circuit, but the bulb in circuit 1 has one-half the resistance of the bulb in circuit 2. The circuits are otherwise identical. The resistance of the light bulb in circuit 1 is 40 02, and that in circuit 2 is 80 Q. Determine (a) the ratio 3₁/32 of the emfs and (b) the ratio 1₁/12 of the currents in the circuits. (c) If the speed of the rod in circuit 1 were twice that in circuit 2, what would be the ratio P₁/P2 of the powers in the circuits? (a) 1/2= Number i (b) 1₁1/12 = Number i (c) P₁/P₂= Number i X X X X X X X xLx X Units Units X Units X X x Conducting rail X X X X x xarrow_forwardƐz= 18 V 非 b 0.5 Q R 2.5 Q R, a 6.0 2 R 1.5 2 h 0.5 N E, = 45 V %3D What is the equation which results when applying the loop rule to loop aedcba, in terms of the variables given in the figure? 0 = If the current through the middle part of the loop is I = 4.75 amps, what is the current through the top loop, I2, in amps? I =arrow_forwardA solenoid consists of 4200 turns of copper wire. The wire has a diameter of 0.200 mm. The solenoidhas a diameter of 1.00 cm. When the solenoid is connected to a 12.0 V battery, we observe that thecurrent increases over time and is 155 mA after 1.50 milliseconds have passed. Assume that the internalresistance of the battery and connecting wires is negligible. (Hint: the solenoid is acting as both the Rand L in an RL circuit).a) What is the length of wire needed to form the solenoid? ________________________b) What is the inductance of the solenoid? ________________________c) What is the length of the solenoid? ________________________d) What will be the current after three time constants have elapsed?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning