Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 65P
To determine
To find:
a) The energy delivered by the battery during the first
b) The energy stored in the magnetic field of the inductor
c) The energy dissipated in the resistor
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
What is the total energy stored in the 10 pH and 60 μH inductors if a current of 2 Amps
flows through them?
70× 10-6J
7×10-6J
140 × 10-6J
280 × 10-6J
5μΗ
10 Η
60μ Η
58 In Fig. 30-47, R₁ = 8.0 2, R₂ = 10 2,
L₁ = 0.30 H, L₂ = 0.20 H, and the ideal
battery has = 6.0 V. (a) Just after
switch S is closed, at what rate is the
current in inductor 1 changing? (b)
When the circuit is in the steady state,
what is the current in inductor 1?
oooo
L₁
R₁
R₂
E SOPORD
L2
elle
Figure 30-47 Problem 58.
A 24-V battery is connected in series with a resistor and an inductor, with R = 8.8 N and L = 2.0 H, respectively.
(a) Find the energy stored in the inductor when the current reaches its maximum value.
%3D
(b) Find the energy stored in the inductor one time constant after the switch is closed.
Chapter 30 Solutions
Fundamentals of Physics Extended
Ch. 30 - If the circular conductor in Fig. 30-21 undergoes...Ch. 30 - Prob. 2QCh. 30 - Prob. 3QCh. 30 - Prob. 4QCh. 30 - Prob. 5QCh. 30 - Prob. 6QCh. 30 - Prob. 7QCh. 30 - Prob. 8QCh. 30 - Prob. 9QCh. 30 - Prob. 10Q
Ch. 30 - Figure 30-31 shows three situations in which a...Ch. 30 - Figure 30-32 gives four situations in which we...Ch. 30 - Prob. 1PCh. 30 - A certain elastic conducting material is stretched...Ch. 30 - Prob. 3PCh. 30 - A wire loop of radius 12 cm and resistance 8.5 is...Ch. 30 - Prob. 5PCh. 30 - Figure 30-37a shows a circuit consisting of an...Ch. 30 - In Fig. 30-38, the magnetic flux through the loop...Ch. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - A rectangular coil of N turns and of length a and...Ch. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - GO In Fig. 30-42a, a uniform magnetic field B...Ch. 30 - GO A square wire loop with 2.00 m sides is...Ch. 30 - GO Figure 30-44a shows a wire that forms a...Ch. 30 - A small circular loop of area 2.00 cm2 is placed...Ch. 30 - Prob. 18PCh. 30 - ILW An electric generator contains a coil of 100...Ch. 30 - At a certain place, Earths magnetic field has...Ch. 30 - Prob. 21PCh. 30 - A rectangular loop area = 0.15 m2 turns in a...Ch. 30 - SSM Figure 30-47 shows two parallel loops of wire...Ch. 30 - Prob. 24PCh. 30 - GO Two long, parallel copper wires of diameter 2.5...Ch. 30 - GO For the wire arrangement in Fig. 30-49, a =...Ch. 30 - ILW As seen in Fig. 30-50, a square loop of wire...Ch. 30 - Prob. 28PCh. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - A loop antenna of area 2.00 cm2 and resistance...Ch. 30 - GO Figure 30-54 shows a rod of length L = 10.0 cm...Ch. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - Prob. 39PCh. 30 - Prob. 40PCh. 30 - A circular coil has a 10.0 cm radius and consists...Ch. 30 - Prob. 42PCh. 30 - Prob. 43PCh. 30 - Prob. 44PCh. 30 - Prob. 45PCh. 30 - Prob. 46PCh. 30 - Inductors in series. Two inductors L1 and L2 are...Ch. 30 - Prob. 48PCh. 30 - Prob. 49PCh. 30 - Prob. 50PCh. 30 - ILW The current in an RL circuit drops from 1.0 A...Ch. 30 - Prob. 52PCh. 30 - Prob. 53PCh. 30 - Prob. 54PCh. 30 - Prob. 55PCh. 30 - Prob. 56PCh. 30 - In Fig. 30-65, R = 15 , L = 5.0 H, the ideal...Ch. 30 - Prob. 58PCh. 30 - Prob. 59PCh. 30 - Prob. 60PCh. 30 - Prob. 61PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 63PCh. 30 - Prob. 64PCh. 30 - Prob. 65PCh. 30 - A circular loop of wire 50 mm in radius carries a...Ch. 30 - Prob. 67PCh. 30 - Prob. 68PCh. 30 - ILW What must be the magnitude of a uniform...Ch. 30 - Prob. 70PCh. 30 - Prob. 71PCh. 30 - Prob. 72PCh. 30 - Prob. 73PCh. 30 - Prob. 74PCh. 30 - Prob. 75PCh. 30 - Prob. 76PCh. 30 - Prob. 77PCh. 30 - Prob. 78PCh. 30 - SSM In Fig. 30-71, the battery is ideal and = 10...Ch. 30 - Prob. 80PCh. 30 - Prob. 81PCh. 30 - A uniform magnetic field B is perpendicular to the...Ch. 30 - Prob. 83PCh. 30 - Prob. 84PCh. 30 - Prob. 85PCh. 30 - Prob. 86PCh. 30 - Prob. 87PCh. 30 - Prob. 88PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 90PCh. 30 - Prob. 91PCh. 30 - Prob. 92PCh. 30 - Prob. 93PCh. 30 - A long cylindrical solenoid with 100 turns/cm has...Ch. 30 - Prob. 95PCh. 30 - A square loop of wire is held in a uniform 0.24 T...Ch. 30 - Prob. 97PCh. 30 - The inductance of a closely wound coil is such...Ch. 30 - The magnetic field in the interstellar space of...Ch. 30 - Prob. 100PCh. 30 - A toroid has a 5.00 cm square cross section, an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Design a current loop that, when rotated in a uniform magnetic field of strength 0.10 T, will produce an emf =0 sin t. where 0=110V and 0=110V .arrow_forwardShow that Equation 32.28 in the text Ls Kirchhoffs loop rule as applied to the circuit in Figure P32.56 with the switch thrown to position b.arrow_forwardA 5000-pF capacitor is charged to 100 V and then quickly connected to an 80-mH inductor. Determine (a) the maximum energy stored in the magnetic field of the inductor, (b) the peak value of the current, and (c) the frequency of oscillation of the circuit.arrow_forward
- Suppose that a cylindrical solenoid is wrapped around a core of iron whose magnetic susceptibility is x. Using Equation 14.9, show that the self-inductance of the solenoid is given by L=(l+x)+0n2Al where l is its length, A its cross-sectional area and N its total number of turns. Nm=Uarrow_forwardCheck Your Understanding How much energy is stored in the inductor of Example 14.2 after the current reaches its maximum value?arrow_forwardA square wire loop 20 cm on a side, with resistance20 m , has its plane normal to a uniform magnetic field of magnitudeB = 2.0 T. If you pull two opposite sides of the loop awayfrom each other, the other two sides automatically draw towardeach other, reducing the area enclosed by the loop. If the area is reducedto zero in time t = 0.20 s, what are (a) the average emf and(b) the average current induced in the loop during t?arrow_forward
- A circuit consists of a battery with E=50.0 V, two resistors R1=30.0Q, R2=15.02, and an inductor L=0.3 H as shown in the figure. The switch S is closed at time t=0. (a) Find the potential difference V.-V, just after the switch is closed. (b) Find the currents i, and iz going through R, and R, and their directions, just after the switch is closed. (c) The switch is left closed a long time; find the currents i, and iz. (d) After the switch is left closed a long time, it is opened again. Find V.-V, and V.-Va just after the switch is opened.arrow_forwardA toroidal solenoid has a magnitude of induced emf of 10.3 [mV] when the rate of change of the current is 0.0250 [A/s]. How many turns does it have if the average flux through each turn is 0.00145 [Wb] when the current is 1.12 [A]?arrow_forwardA 24-V battery is connected in series with a resistor and an inductor, with R = 3.0 2 and L = 2.8 H, respectively. (a) Find the energy stored in the inductor when the current reaches its maximum value. (b) Find the energy stored in the inductor one time constant after the switch is closed.arrow_forward
- A 24-V battery is connected in series with a resistor and an inductor, with R = 7.8 and L = 7.0 H, respectively. (a) Find the energy stored in the inductor when the current reaches its maximum value. (b) Find the energy stored in the inductor one time constant after the switch is closed. Jarrow_forwardA 24-V battery is connected in series with a resistor and an inductor, with R = 4.8 and L = 7.4 H, respectively. (a) Find the energy stored in the inductor when the current reaches its maximum value. J (b) Find the energy stored in the inductor one time constant after the switch is closed.arrow_forwardA rectangular loop of wire is placed perpendicular to a uniform magnetic field and then spun around one of its sides at frequency f. The induced emf is a maximum when: the flux is zero the flux is a maximum the flux is half its maximum value O the derivative of the flux with respect to time is zero O none of the abovearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning