Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 77P
To determine
To Find:
a) Given combination can be replaced by a single coil of equivalent inductance which is given by
b) How could the coils be connected to yield an equivalent inductance of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
*77 SSM Two coils connected as
shown in Fig. 30-70 separately have inductances L1 and L2. TI
mutual inductance is M. (a) Show that this combination can be
placed by a single coil of equivalent inductance given by
Leg = L1 + L2 + 2M.
(b) How could the coils in Fig. 30-70 be reconnected to yield
equivalent inductance of
Leg = L + L2- 2M?
(This problem is an extension of Problem 47, but the requirem
that the coils be far apart has been removed.)
L1
M-
L9
N1
Ng
Figure 30-70 Problem 77.
58 In Fig. 30-47, R₁ = 8.0 2, R₂ = 10 2,
L₁ = 0.30 H, L₂ = 0.20 H, and the ideal
battery has = 6.0 V. (a) Just after
switch S is closed, at what rate is the
current in inductor 1 changing? (b)
When the circuit is in the steady state,
what is the current in inductor 1?
oooo
L₁
R₁
R₂
E SOPORD
L2
elle
Figure 30-47 Problem 58.
58 In Fig. 30-47, R₁ = 8.0 92, R₂ = 10 22,
L₁ = 0.30 H, L₂= 0.20 H, and the ideal
battery has & = 6.0 V. (a) Just after
switch S is closed, at what rate is the
current in inductor 1 changing? (b)
When the circuit is in the steady state,
what is the current in inductor 1? modi
0000
L₁
R₁
R
E SONO OBORE
0000
L
Figure 30-47 Problem 58.
Chapter 30 Solutions
Fundamentals of Physics Extended
Ch. 30 - If the circular conductor in Fig. 30-21 undergoes...Ch. 30 - Prob. 2QCh. 30 - Prob. 3QCh. 30 - Prob. 4QCh. 30 - Prob. 5QCh. 30 - Prob. 6QCh. 30 - Prob. 7QCh. 30 - Prob. 8QCh. 30 - Prob. 9QCh. 30 - Prob. 10Q
Ch. 30 - Figure 30-31 shows three situations in which a...Ch. 30 - Figure 30-32 gives four situations in which we...Ch. 30 - Prob. 1PCh. 30 - A certain elastic conducting material is stretched...Ch. 30 - Prob. 3PCh. 30 - A wire loop of radius 12 cm and resistance 8.5 is...Ch. 30 - Prob. 5PCh. 30 - Figure 30-37a shows a circuit consisting of an...Ch. 30 - In Fig. 30-38, the magnetic flux through the loop...Ch. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - A rectangular coil of N turns and of length a and...Ch. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - GO In Fig. 30-42a, a uniform magnetic field B...Ch. 30 - GO A square wire loop with 2.00 m sides is...Ch. 30 - GO Figure 30-44a shows a wire that forms a...Ch. 30 - A small circular loop of area 2.00 cm2 is placed...Ch. 30 - Prob. 18PCh. 30 - ILW An electric generator contains a coil of 100...Ch. 30 - At a certain place, Earths magnetic field has...Ch. 30 - Prob. 21PCh. 30 - A rectangular loop area = 0.15 m2 turns in a...Ch. 30 - SSM Figure 30-47 shows two parallel loops of wire...Ch. 30 - Prob. 24PCh. 30 - GO Two long, parallel copper wires of diameter 2.5...Ch. 30 - GO For the wire arrangement in Fig. 30-49, a =...Ch. 30 - ILW As seen in Fig. 30-50, a square loop of wire...Ch. 30 - Prob. 28PCh. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - A loop antenna of area 2.00 cm2 and resistance...Ch. 30 - GO Figure 30-54 shows a rod of length L = 10.0 cm...Ch. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - Prob. 39PCh. 30 - Prob. 40PCh. 30 - A circular coil has a 10.0 cm radius and consists...Ch. 30 - Prob. 42PCh. 30 - Prob. 43PCh. 30 - Prob. 44PCh. 30 - Prob. 45PCh. 30 - Prob. 46PCh. 30 - Inductors in series. Two inductors L1 and L2 are...Ch. 30 - Prob. 48PCh. 30 - Prob. 49PCh. 30 - Prob. 50PCh. 30 - ILW The current in an RL circuit drops from 1.0 A...Ch. 30 - Prob. 52PCh. 30 - Prob. 53PCh. 30 - Prob. 54PCh. 30 - Prob. 55PCh. 30 - Prob. 56PCh. 30 - In Fig. 30-65, R = 15 , L = 5.0 H, the ideal...Ch. 30 - Prob. 58PCh. 30 - Prob. 59PCh. 30 - Prob. 60PCh. 30 - Prob. 61PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 63PCh. 30 - Prob. 64PCh. 30 - Prob. 65PCh. 30 - A circular loop of wire 50 mm in radius carries a...Ch. 30 - Prob. 67PCh. 30 - Prob. 68PCh. 30 - ILW What must be the magnitude of a uniform...Ch. 30 - Prob. 70PCh. 30 - Prob. 71PCh. 30 - Prob. 72PCh. 30 - Prob. 73PCh. 30 - Prob. 74PCh. 30 - Prob. 75PCh. 30 - Prob. 76PCh. 30 - Prob. 77PCh. 30 - Prob. 78PCh. 30 - SSM In Fig. 30-71, the battery is ideal and = 10...Ch. 30 - Prob. 80PCh. 30 - Prob. 81PCh. 30 - A uniform magnetic field B is perpendicular to the...Ch. 30 - Prob. 83PCh. 30 - Prob. 84PCh. 30 - Prob. 85PCh. 30 - Prob. 86PCh. 30 - Prob. 87PCh. 30 - Prob. 88PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 90PCh. 30 - Prob. 91PCh. 30 - Prob. 92PCh. 30 - Prob. 93PCh. 30 - A long cylindrical solenoid with 100 turns/cm has...Ch. 30 - Prob. 95PCh. 30 - A square loop of wire is held in a uniform 0.24 T...Ch. 30 - Prob. 97PCh. 30 - The inductance of a closely wound coil is such...Ch. 30 - The magnetic field in the interstellar space of...Ch. 30 - Prob. 100PCh. 30 - A toroid has a 5.00 cm square cross section, an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Show that Equation 32.28 in the text Ls Kirchhoffs loop rule as applied to the circuit in Figure P32.56 with the switch thrown to position b.arrow_forwardAn inductor has a current I(t) = (0.500 A) cos[(275s-1)t] flowing through it. If the maximum emf across the inductor is equal to 0.500 V, determine the self-inductance of the inductor.arrow_forward(a) A coil of conducting wire carries a current of i(t) = 16.0 sin(1.20 x 10³t), where i is in amperes and t is in seconds. A second coil is placed in close proximity to the first, and the mutual inductance of the coils is 160 pH. What is the peak emf (in V) in the second coil? V (b) What If? Which would lead to a larger peak emf in the second coil, a doubling of the mutual inductance or a doubling of the frequency with which the current in the first coil changes? O Doubling the mutual inductance would lead to a larger peak emf. O Doubling the frequency with which the current in the first coil changes would lead to a larger peak emf. O The two changes would each have the same effect.arrow_forward
- An inductor has a current I(t) = (0.480 A) cos[(260 s-1)t] flowing through it. If the maximum emf %3D across the inductor is equal to 0.530 V, what is the self-inductance of the inductor, in mH? A 110-V hair dryer is rated at 1200 W. What current will it draw when operating from a 110-V electrical outlet? A small glass bead has been charged to 4.5 nC. What is the magnitude of the electric field 2.0 cm from the center of the bead? (k = 1/4nE 0 = 8.99 x 10° N. m2/C2) %3Darrow_forwardIf the ratio of the outer radius to the inner radius of a rectangular toroid is doubled how does the energy stored change for a given current? Hint: the inductance of a rectangular toroid with N turns, a height h, and outer and inner radii R2 and R₁, respectively is MON²h L = -In 2π R₂ R₁ O The answer cannot be determined from the information given. ○ It stays the same. O It is reduced by half. ○ It quadruples. ○ It doubles.arrow_forwardTwo solenoids A and B, spaced close to each other and sharing the same cylindrical axis, have 450 and 550 turns, respectively. A current of 2.20 A in solenoid A produces an average flux of 300 μWb through each turn of A and a flux of 90.0 μWb through each turn of B. (a) Calculate the mutual inductance of the two solenoids. mH Me (b) What is the inductance of A? mH (c) What is the magnitude of the emf that is induced in B when the current in A changes at the rate of 0.500 A/s? mV Help?arrow_forward
- (a) If an inductor carrying a 1.45 A current stores an energy of 0.250 mJ, what is its inductance? mH(b) How much energy does the same inductor store if it carries a 2.8 A current? mJarrow_forwardTwo inductors L1 and L2 are connected in series and are separated by a large distance so that the magnetic field of one cannot affect the other. (a) Show that the equivalent inductance is given by Leq =L1 + L2arrow_forwardA 24-V battery is connected in series with a resistor and an inductor, with R = 8.8 N and L = 2.0 H, respectively. (a) Find the energy stored in the inductor when the current reaches its maximum value. %3D (b) Find the energy stored in the inductor one time constant after the switch is closed.arrow_forward
- A battery providing emf V is connected in series to a resistor R and an inductor L, and left until the current reaches a constant value. (a) What is the energy stored in the inductor in terms of V, R and L? Then, at t = 0, the battery is suddenly removed, so that only the inductor and resistor are left connected to each other in a closed circuit. (b) Derive an expression for the energy stored in the inductor in the new circuit without the battery. Sketch your expression as a function of time. (c) How long does it take for the energy stored in the inductor to decay to 1/9 of the initial value that you found in part (a)?arrow_forwardTwo inductors, L1 and L2 (where L1 > L2) are connected in series. When their fields oppose each other, the total inductance is 5.8 mH while when their fields aid each other, the resulting total inductance is 44.2 mH. Solve for the inductance of the two inductors given that their coupling coefficient is 0.8.arrow_forwardA 90.0 mH inductor is connected in a circuit. The current through the inductor is given by the function t²-6¹. Estimate the time at which the emf will reduce to zero.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning