
(a)
Interpretation: The given compounds in each group are to be ranked in the order of increasing boiling point.
Concept introduction: Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
Intermolecular forces are also known as non-covalent interactions. The interactions present between molecules are known as intermolecular forces. A
Therefore, the increasing order of boiling point is as follows:

Answer to Problem 3.32P
The increasing order of boiling point for the given compounds is
Explanation of Solution
The given compounds are
Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
The increasing order of intermolecular force strength is as follows:
Therefore, the increasing order of boiling point is as follows:
The boiling point increases with an increase in the surface area.
Therefore, the increasing order of boiling point for the given compounds is
The increasing order of boiling point for the given compounds is
(b)
Interpretation: The given compounds in each group are to be ranked in the order of increasing boiling point.
Concept introduction: Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
Intermolecular forces are also known as non-covalent interactions. The interactions present between molecules are known as intermolecular forces. A functional group present in a molecule decides the type of interaction.
Therefore, the increasing order of boiling point is as follows:

Answer to Problem 3.32P
The increasing order of boiling point for the given compounds is
Explanation of Solution
The given compounds are
Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
In
The increasing order of intermolecular force strength is as follows:
Therefore, the increasing order of boiling point is as follows:
Therefore, the increasing order of boiling point for the given compounds is
The increasing order of boiling point for the given compounds is
(c)
Interpretation: The given compounds in each group are to be ranked in the order of increasing boiling point.
Concept introduction: Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
Intermolecular forces are also known as non-covalent interactions. The interactions present between molecules are known as intermolecular forces. A functional group present in a molecule decides the type of interaction.
Therefore, the increasing order of boiling point is as follows:

Answer to Problem 3.32P
The increasing order of boiling point for the given compounds is
Explanation of Solution
The given compounds are
Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
In
The increasing order of intermolecular force strength is as follows:
Therefore, the increasing order of boiling point is as follows:
The boiling point increases with an increase in the surface area. Branched chain alkanes have low boiling point than straight chain alkanes because in branched chain alkanes, surface area is less.
Therefore, the increasing order of boiling point for the given compounds is
The increasing order of boiling point for the given compounds is
(d)
Interpretation: The given compounds in each group are to be ranked in the order of increasing boiling point.
Concept introduction: Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
Intermolecular forces are also known as non-covalent interactions. The interactions present between molecules are known as intermolecular forces. A functional group present in a molecule decides the type of interaction.
Therefore, the increasing order of boiling point is as follows:

Answer to Problem 3.32P
The increasing order of intermolecular force strength for the given compounds is shown below.
Explanation of Solution
The given compounds are,
Figure 1
Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
The compounds containing hydroxyl groups show hydrogen bonding.
The increasing order of intermolecular force strength is as follows:
Therefore, the increasing order of boiling point is as follows:
The boiling point increases with an increase in the surface area. Branched chain
Therefore, the increasing order of boiling point for the given compounds is,
Figure 2
The increasing order of boiling point for the given compounds is shown in Figure 2.
(e)
Interpretation: The given compounds in each group are to be ranked in the order of increasing boiling point.
Concept introduction: Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
Intermolecular forces are also known as non-covalent interactions. The interactions present between molecules are known as intermolecular forces. A functional group present in a molecule decides the type of interaction.
Therefore, the increasing order of boiling point is as follows:

Answer to Problem 3.32P
The increasing order of intermolecular force strength for the given compounds is shown below.
Explanation of Solution
The given compounds are,
Figure 3
Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
The increasing order of intermolecular force strength is as follows:
Therefore, the increasing order of boiling point is as follows:
The boiling point increases with an increase in the surface area. Branched chain alkanes have low boiling point than straight chain alkanes because in branched chain alkanes, surface area is less.
Therefore, the increasing order of boiling point for the given compounds is,
Figure 4
The increasing order of boiling point for the given compounds is rightfully stated.
(f)
Interpretation: The given compounds in each group are to be ranked in the order of increasing boiling point.
Concept introduction: Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
Intermolecular forces are also known as non-covalent interactions. The interactions present between molecules are known as intermolecular forces. A functional group present in a molecule decides the type of interaction. The increasing order of intermolecular force strength is as follows:
Therefore, the increasing order of boiling point is as follows:

Answer to Problem 3.32P
The increasing order of intermolecular force strength for the given compounds is shown below.
Explanation of Solution
The given compounds are,
Figure 5
A hydrogen bond is a strong electrostatic attraction which takes place when hydrogen atom is bonded to an electronegative atom (
Dipole-dipole interactions are the forces present between two polar molecules.
Van der Waals forces are the weak forces that are present between non-polar compounds or molecules.
The increasing order of intermolecular force strength is as follows:
The interaction present in cyclopentane is Van der Waals forces because it is a non-polar compound.
The interactions present in cyclobutanolare Van der Waals forces, hydrogen bonding, and dipole-dipole interactions.
Due to electronegativity difference between carbon and oxygen, ethers are polar molecule. Thus, the interaction present in polar molecules is Dipole-dipole interaction. The interactions present in tetrahydrofuran are Van der Waals forces and dipole-dipole interactions.
Therefore, the increasing order of boiling point for the given compounds is,
Figure 6
The increasing order of boiling point for the given compounds is rightfully stated.
Want to see more full solutions like this?
Chapter 3 Solutions
Organic Chemistry-Package(Custom)
- For each reaction below, decide if the first stable organic product that forms in solution will create a new CC bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. དྲ。 ✗MgBr ? O CI Will the first product that forms in this reaction create a new C-C bond? Yes No • ? Will the first product that forms in this reaction create a new CC bond? Yes No × : ☐ Xarrow_forwardPredict the major products of this organic reaction: OH NaBH4 H ? CH3OH Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. ☐ : Sarrow_forwardPredict the major products of this organic reaction: 1. LIAIHA 2. H₂O ? Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. X : ☐arrow_forward
- For each reaction below, decide if the first stable organic product that forms in solution will create a new C - C bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. NH2 tu ? ? OH Will the first product that forms in this reaction create a new CC bond? Yes No Will the first product that forms in this reaction create a new CC bond? Yes No C $ ©arrow_forwardAs the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C-C bond as its major product: 1. MgCl ? 2. H₂O* If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If the major products of this reaction won't have a new CC bond, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. This reaction will not make a product with a new CC bond. G marrow_forwardIncluding activity coefficients, find [Hg22+] in saturated Hg2Br2 in 0.00100 M NH4 Ksp Hg2Br2 = 5.6×10-23.arrow_forward
- give example for the following(by equation) a. Converting a water insoluble compound to a soluble one. b. Diazotization reaction form diazonium salt c. coupling reaction of a diazonium salt d. indacator properties of MO e. Diazotization ( diazonium salt of bromobenzene)arrow_forward2-Propanone and ethyllithium are mixed and subsequently acid hydrolyzed. Draw and name the structures of the products.arrow_forward(Methanesulfinyl)methane is reacted with NaH, and then with acetophenone. Draw and name the structures of the products.arrow_forward
- 3-Oxo-butanenitrile and (E)-2-butenal are mixed with sodium ethoxide in ethanol. Draw and name the structures of the products.arrow_forwardWhat is the reason of the following(use equations if possible) a.) In MO preperation through diazotization: Addition of sodium nitrite in acidfied solution in order to form diazonium salt b.) in MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at low pH c.) In MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at pH 4.5 d.) Avoiding not cooling down the reaction mixture when preparing the diazonium salt e.) Cbvcarrow_forwardA 0.552-g sample of an unknown acid was dissolved in water to a total volume of 20.0 mL. This sample was titrated with 0.1103 M KOH. The equivalence point occurred at 29.42 mL base added. The pH of the solution at 10.0 mL base added was 3.72. Determine the molar mass of the acid. Determine the Ka of the acid.arrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning




