
(a)
Interpretation: The given compounds must be arranged in increasing order of strength of their intermolecular forces.
Concept introduction: Intermolecular forces are those interactions among molecules by which the molecules either attract or repel each other. There are mainly four types of intermolecular interactions these are electrostatic, Van der Waals, dipole-dipole and hydrogen bonding. The electrostatic force is strongest and among the three types of intermolecular forces in covalent compounds van der Waals forces are weakest, dipole-dipole is intermediate and hydrogen bonding is the strongest.

Answer to Problem 3.28P
Increasing intermolecular forces
Explanation of Solution
The CH3CH3, ethane consists of only C – H and C – C bonds and these bonds are nonpolar thus the ethane has no permanent dipole moment therefore, ethane molecules are attracted to each other only by van der Waals forces.
The CH3Cl, chloromethane consists of C – H and C – Cl bonds among which C – Cl bond is polar since Cl is highly electronegative atom thus the chloromethane molecule possesses a permanent dipole moment. Therefore, chloromethane molecules are attracted to each other not only by van der Waals forces but also by dipole-dipole interactions.
The CH3NH2, methylamine consists of C – H, N – H and C – Cl bonds among which C – N and N – H bonds are polar since N is an electronegative atom thus the methylamine molecule possesses a permanent dipole moment. Therefore, methylamine molecules are attracted to each other not only by van der Waals forces but also by dipole-dipole interactions and since it contains a H-atom attached to an electronegative N-atom so CH3NH2 molecules will also be linked through Hydrogen bonding.
Increasing intermolecular forces
(b)
Interpretation: The given compounds must be arranged in increasing order of strength of their intermolecular forces.
Concept introduction: Intermolecular forces are those interactions among molecules by which the molecules either attract or repel each other. There are mainly four types of intermolecular interactions these are electrostatic, Van der Waals, dipole-dipole and hydrogen bonding. The electrostatic force is strongest and among the three types of intermolecular forces in covalent compounds van der Waals forces are weakest, dipole-dipole is intermediate and hydrogen bonding is the strongest.

Answer to Problem 3.28P
Increasing intermolecular forces
Explanation of Solution
The CH3Br molecule consists of only C – H and C – Br bonds among which C – Br bond is polar thus this molecule has permanent dipole moment therefore; these molecules are attracted towards each other not only by van der Waals forces but also by dipole-dipole interactions.
The CH3I molecule consists of only C – H and C – I bonds among which C – I bond is polar thus this molecule has permanent dipole moment therefore; these molecules are attracted towards each other not only by van der Waals forces but also by dipole-dipole interactions.
The CH3Cl molecule consists of only C – H and C – Cl bonds among which C – Cl bond is polar thus this molecule has permanent dipole moment therefore; these molecules are attracted towards each other not only by van der Waals forces but also by dipole-dipole interactions.
All these molecules are attracted to each other by van der Waals forces and dipole-dipole interactions. But with increase in size of the atom here halogen atoms the polarizability increases which results in the increase of intermolecular forces. Here, the size of halogen atoms increase with increase in
Increasing intermolecular forces
(c)
Interpretation: The given compounds must be arranged in increasing order of strength of their intermolecular forces.
Concept introduction: Intermolecular forces are those interactions among molecules by which the molecules either attract or repel each other. There are mainly four types of intermolecular interactions these are electrostatic, Van der Waals, dipole-dipole and hydrogen bonding. The electrostatic force is strongest and among the three types of intermolecular forces in covalent compounds van der Waals forces are weakest, dipole-dipole is intermediate and hydrogen bonding is the strongest.

Answer to Problem 3.28P
Increasing intermolecular forces
Explanation of Solution
The
The
The
Increasing intermolecular forces
(d)
Interpretation: The given compounds must be arranged in increasing order of strength of their intermolecular forces.
Concept introduction: Intermolecular forces are those interactions among molecules by which the molecules either attract or repel each other. There are mainly four types of intermolecular interactions these are electrostatic, Van der Waals, dipole-dipole and hydrogen bonding. The electrostatic force is strongest and among the three types of intermolecular forces in covalent compounds van der Waals forces are weakest, dipole-dipole is intermediate and hydrogen bonding is the strongest.

Answer to Problem 3.28P
Increasing intermolecular forces
Explanation of Solution
The CH3Cl molecule consists of only C – H and C – Cl bonds among which C – Cl bond is polar thus this molecule has permanent dipole moment therefore; these molecules are attracted towards each other not only by van der Waals forces but also by dipole-dipole interactions.
The CH3OH, methanol consists of C – H and O – H bonds among which O – H bond are polar since O is an electronegative atom thus the methanol molecule possesses a permanent dipole moment. Therefore, methanol molecules are attracted to each other not only by van der Waals forces but also by dipole-dipole interactions and since it contains a H-atom attached to an electronegative O-atom so CH3OH molecules will also be linked through Hydrogen bonding.
The NaCl molecule consists of only an ionic bond among Na+ and Cl- ions thus, these molecules are attracted towards each other by electrostatic interactions.
Increasing intermolecular forces
Want to see more full solutions like this?
Chapter 3 Solutions
Organic Chemistry-Package(Custom)
- Why do only the immediately adjacent H's show up in the number of peaks? Are there normally peaks for the H's that are 2-3 carbons away?arrow_forwardPlease help me understand this question. Thank you. Organic Chem 1arrow_forwardFor the reaction below, the concentrations at equilibrium are [SO₂] = 0.50 M, [0] = 0.45 M, and [SO3] = 1.7 M. What is the value of the equilibrium constant, K? 2SO2(g) + O2(g) 2SO3(g) Report your answer using two significant figures. Provide your answer below:arrow_forward
- scratch paper, and the integrated rate table provided in class. our scratch work for this test. Content attribution 3/40 FEEDBACK QUESTION 3 - 4 POINTS Complete the equation that relates the rate of consumption of H+ and the rate of formation of Br2 for the given reaction. 5Br (aq) + BrO3 (aq) + 6H (aq) →3Br2(aq) + 3H2O(l) • Your answers should be whole numbers or fractions without any decimal places. Provide your answer below: Search 尚 5 fn 40 * 00 99+ 2 9 144 a [arrow_forward(a) Write down the structure of EDTA molecule and show the complex structure with Pb2+ . (b) When do you need to perform back titration? (c) Ni2+ can be analyzed by a back titration using standard Zn2+ at pH 5.5 with xylenol orange indicator. A solution containing 25.00 mL of Ni2+ in dilute HCl is treated with 25.00 mL of 0.05283 M Na2EDTA. The solution is neutralized with NaOH, and the pH is adjusted to 5.5 with acetate buffer. The solution turns yellow when a few drops of indicator are added. Titration with 0.02299 M Zn2+ requires 17.61 mL to reach the red end point. What is the molarity of Ni2+ in the unknown?arrow_forwardA compound has the molecular formula CH40, and shows a strong IR absorption at 2850-3150 cm. The following signals appear in the 'H NMR spectrum: 1.4 ppm (triplet, 6H), 4.0 ppm (quartet, 4H), 6.8 ppm (broad singlet, 4H). Which of the following structures is consistent with these data? Select the single best answer. OCH CH₂ x OCH2CH3 CH₂OCH3 OH CH₂OCH OH CH, OCH₁ CH₂OCH, CH₂OCH HO OH ° CH₂OCH3arrow_forward
- predict the major product while showing me the intermidiate products from each reagent/reagent grouparrow_forwardWhy is it desirable in the method of standard addition to add a small volume of concentrated standard rather than a large volume of dilute standard? An unknown sample of Cu2+ gave an absorbance of 0.262 in an atomic absorption analysis. Then 1.00 mL of solution containing 100.0 ppm (= µg/mL) Cu2+ was mixed with 95.0 mL of unknown, and the mixture was diluted to 100.0 mL in a volumetric flask. The absorbance of the new solution was 0.500. Calculate the concentration of copper ion in the sample.arrow_forwardWhat is the relation between the standard deviation and the precision of a procedure? What is the relation between standard deviation and accuracy? The percentage of an additive in gasoline was measured six times with the following results: 0.13, 0.12, 0.16, 0.17, 0.20, 0.11%. Find the 90% and 99% confidence intervals for the percentage of the additive.arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





