
(a)
Interpretation: To identify the number of amide
Concept introduction: A functional group is an atom or a molecule in the compound which gives the characteristic property to that particular compound. It is the site where the reaction takes place.
(b)
Interpretation: To identify which OH groups are attached to sp3 C-atom and which are attached at sp2 hybridized C-atoms.
Concept introduction: A sp3 hybridization is shown by the C-atoms which are bonded to four substituents and a sp2 carbon atom is bonded to three substituents.
(c)
Interpretation: To identify whether the given compound vancomycin is water soluble or not.
Concept introduction: Hydrogen bonding is seen in those molecules in which a hydrogen atom is bonded to an electronegative atom containing a lone pair like F, N or O. Hydrogen bond is formed when a H atom bonded to the electronegative atom gets attracted towards the lone pair of the electronegative atom present on another molecule. Thus, a molecule can form hydrogen bond with water if it contains electronegative atoms like F, N or O.
(d)
Interpretation: To identify the most acidic proton.
Concept introduction: The most acidic proton is the one present on the functional group which can donate a proton readily and can form salt.
(e)
Interpretation: To identify three functional groups which can form hydrogen bonds.
Concept introduction: Hydrogen bonding is seen in those molecules in which a hydrogen atom is bonded to an electronegative atom containing a lone pair like F, N or O. Hydrogen bond is formed when a H atom bonded to the electronegative atom gets attracted towards the lone pair of the electronegative atom present on another molecule.

Want to see the full answer?
Check out a sample textbook solution
Chapter 3 Solutions
Organic Chemistry-Package(Custom)
- Acetic acid is added to DI water at an initial concentration of 10 -6 M (Ka=1.8x10-5) A. Using the "ICE" Method, what would the pH be at equilibrium? State assumptions and show your work. B. Using the simultaneous equations method, what would the pH be at equilibrium? Show your workarrow_forward1. Show that the change in entropy for a fixed amount of ideal gas held at a constant temperature undergoing a volume change is given by the simple equation AS = NkB In Hint: Start with the equation M dS = du + (Œ) dv - Ž (#) an, dU du+av-dN; j=1 Why doesn't the equation for the entropy of an ideal gas depend on the strength of the intermolecular forces for the gas?arrow_forward2. Make an ice cube at 1 bar pressure by freezing an amount of liquid water that is 2 cm x 2 cm x 2 cm in volume. The density of liquid water at 0 °C is 1.000 g cm³ and the density of ice at 0 °C is 0.915 g cm³. Note that this difference in density is the reason your water pipes burst if they freeze and why you shouldn't forget to take your bottle of pop out of the freezer if you put it in there to try and cool it down faster. A. What is the work of expansion upon freezing? B. Is work done on the system or by the system?arrow_forward
- I have a excitation/emission spectra of a quinine standard solution here, and I'm having trouble interpreting it. the red line is emission the blue line is excitation. i'm having trouble interpreting properly. just want to know if there is any evidence of raman or rayleigh peaks in the spectra.arrow_forwardGive the major product of the following reaction. excess 1. OH, H₂O 1.OH H CH3CH2CH21 H 2. A.-H₂O Draw the molecule on the canvas by choosing buttons from the Tools (for bonds), Atoms, and Advanced Template toolbars. The single bond is active by default.arrow_forward2. Use Hess's law to calculate the AH (in kJ) for: rxn CIF(g) + F2(g) → CIF 3 (1) using the following information: 2CIF(g) + O2(g) → Cl₂O(g) + OF 2(g) AH = 167.5 kJ ΔΗ 2F2 (g) + O2(g) → 2 OF 2(g) 2C1F3 (1) + 202(g) → Cl₂O(g) + 3 OF 2(g) о = = -43.5 kJ AH = 394.1kJarrow_forward
- The combustion of 28.8 g of NH3 consumes exactly _____ g of O2. 4 NH3 + 7 O2 ----> 4 NO2 + 6 H2Oarrow_forwardWhat is the molecular formula of the bond-line structure shown below OH HO ○ C14H12O2 ○ C16H14O2 ○ C16H12O2 O C14H14O2arrow_forwardCheck all molecules that are acids on the list below. H2CO3 HC2H3O2 C6H5NH2 HNO3 NH3arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





