
Consider heat conduction through a wall of thickness L and area A. Under what conditions will the temperature distributions in the wall be a straight line?

The condition under which the temperature distribution in the wall is a straight line.
Explanation of Solution
The temperature distribution of a wall with thickness L and area A is shown in the figure below:
The one-dimensional steady state heat conduction equation without heat generation for the wall is
Here, T is the temperature and x is the direction of flow of heat.
Integrate equation (1) with respect to x.
Where, c1 is the constant of integration.
Further integrate the equation (2) with respect to x.
Now, calculate the constant of integration.
At x = 0, T =T1
Substitute the value in equation (3);
Substitute the value of c2 in equation (3);
Substitute the value of c1 and c2 in equation (3);
The above equation is in the form of a straight line equation y = mx+c. Thus, the distribution of temperature in the plane wall will be a straight line during steady-state one dimensional heat transfer.
Thus, the following are the conditions during which the temperature distribution in the wall is a straight line.
- Heat conduction in one-dimensional steady state direction.
- Thermal conductivity should be constant.
- There is no any internal heat generation in the wall.
Want to see more full solutions like this?
Chapter 3 Solutions
Heat and Mass Transfer: Fundamentals and Applications
- HW12 A multiple-disc clutch has five plates having four pairs of active friction surfaces. If the intensity of pressure is not to exceed 0.127 N/mm², find the power transmitted at 500 r.p.m. The outer and inner radii of friction surfaces are 125 mm and 75 mm respectively. Assume uniform wear and take the coefficient of friction = 0.3.arrow_forwardThe sketch below gives some details of the human heart at rest. What is the total power requirement (work/time) for an artificial heart pump if we use a safety factor of 5 to allow for inefficiencies, the need to operate the heart under stress, etc.? Assume blood has the properties of water. p pressure above atmosphere blood going to the lungs for a fresh charge of oxygen p = 2.9 kPa 25v pulmonary artery d = 25mm fresh oxygenated blood from the lungs p = 1.0 kPa vena cava d=30mm right auricle pulmonary vein, d = 28mm aorta, d=20mm spent blood returning from left auricle the body p = 0.66 kPa right left ventricle ventricle blood to feed the body, p 13 kPa normal blood flow = 90 ml/sarrow_forward4- A horizontal Venturi meter is used to measure the flow rate of water through the piping system of 20 cm I.D, where the diameter of throat in the meter is d₂ = 10 cm. The pressure at inlet is 17.658 N/cm2 gauge and the vacuum pressure of 35 cm Hg at throat. Find the discharge of water. Take Cd = 0.98.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
