
An ideal voltmeter connected across a certain fresh 9-V battery reads 9.30 V, and an ideal ammeter briefly connected across the same battery reads 3.70 A. We say the battery has an open-circuit voltage of 9.30 V and a short-circuit current of 3.70 A. Model the battery as a source of emf ε in series with an internal resistance r as in Figure 27.1a. Determine both (a) ε and (b) r. An experimenter connects two of these identical batteries together as shown in Figure P27.45. Find (c) the open-circuit voltage and (d) the short-circuit current of the pair of connected batteries. (e) The experimenter connects a 12.0-Ω resistor between the exposed terminals of the connected batteries. Find the current in the resistor. (f) Find the power delivered to the resistor. (g) The experimenter connects a second identical resistor in parallel with the first. Find the power delivered to each resistor. (h) Because the same pair of batteries is connected across both resistors as was connected across the single resistor, why is the power in part (g) not the same as that in part (f)?
Figure P27.45
(a)

Answer to Problem 28.74AP
Explanation of Solution
Given info: The open circuit voltage of the battery is
In an open circuit current the current of the battery is
Formula to calculate the emf of the battery is,
Here,
Substitute
Conclusion:
Therefore, the emf of the battery is
(b)

Answer to Problem 28.74AP
Explanation of Solution
Given info: The open circuit voltage of the battery is
Formula to calculate the internal resistance of the battery is,
Here,
Substitute
Conclusion:
Therefore, resistance of the battery is
(c)

Answer to Problem 28.74AP
Explanation of Solution
Given info: The open circuit voltage of the battery is
Formula to calculate the total emf of the battery is,
Here,
Substitute
The total emf of the battery is equal to the open circuit voltage of the battery.
Conclusion:
Therefore, the open circuit voltage of the battery is
(d)

Answer to Problem 28.74AP
Explanation of Solution
Given info: The open circuit voltage of the battery is
The total resistance in the battery is,
Here,
Substitute
Thus, the internal resistance of the battery is
Formula to calculate the short circuit current of the batteries is,
Here,
Substitute
Conclusion:
Therefore, the short circuit current of the pair of connected batteries is
(e)

Answer to Problem 28.74AP
Explanation of Solution
Given info: The open circuit voltage of the battery is
The total series resistance in the battery is,
Here,
Substitute
Thus, the total series resistance of the battery is
Formula to calculate the current in the resistor
Here,
Substitute
Conclusion:
Therefore, the current in the resistor
(f)

Answer to Problem 28.74AP
Explanation of Solution
Given info: The open circuit voltage of the battery is
Formula to calculate the power delivered to the resistor is,
Here,
Substitute
Conclusion:
Therefore, the power delivered to the resistor is
(g)

Answer to Problem 28.74AP
Explanation of Solution
Given info: The open circuit voltage of the battery is
The batteries are connected in series. The voltages of the both batteries are same.
The equivalent internal resistance in the battery is,
Here,
Substitute
Thus, the total resistance of the resistor is
Formula to calculate the current in the batteries is,
Here,
Substitute
Thus, the current produced in the batteries is
Formula to calculate the terminal voltage across both batteries is,
Here,
Substitute
Thus, the terminal voltage across both batteries is
Formula to calculate the power delivered to each resistor is,
Here,
Substitute
Conclusion:
Therefore, the power delivered to each resistor is
(h)

Answer to Problem 28.74AP
Explanation of Solution
Given info: The open circuit voltage of the battery is
In part (g), the total internal resistance of the resistor is
Conclusion:
Therefore, the internal resistance of the batteries and the terminal voltage of the batteries is not same in both cases.
Want to see more full solutions like this?
Chapter 28 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- please solve and answer the question correctly. thank you!!arrow_forwardplease solve and answer the question correctly. thank you!! (hint in 2nd photo)arrow_forwardNewton's Laws of Motion - Please help with the first angle calculations of standard deviation and margin of error. I just need a model and I can figure out the other two angles. Thanks!arrow_forward
- 2. A battleship simultaneously fires two shells at enemy ships. If the shells follow the parabolic trajectories shown, which ship gets hit first? a. A b. both at the same time C. B d. need more information battleship Barrow_forwardA m₁ = 1.70-kg aluminum block and a m₂ = 8.00-kg copper block are connected by a light string over a frictionless pulley. The two blocks are allowed to move on a fixed steel block wedge (of angle 0 = 31.5°) as shown in the figure. (For aluminum on steel, μk k = 0.36.) Мк Aluminum m Copper = 0.47. For copper on steel, Steel m2 Ꮎ (a) the acceleration of the two blocks m/s² (b) the tension in the string Narrow_forwardWhile the 83.3 kg Dora Milaje is in equilibrium, the rope makes a 70.0˚ angle with the horizontal. Assuming the coefficient of friction between her shoes and the ship is 0.772 and her static friction is at its maximum value, what is the tension in the cable?arrow_forward
- Can someone help me asnwer this thank youarrow_forwardPlease solve and answer the problem correctly please. Be sure to give explanations on each step and write neatlyplease. Thank you!! ( preferably type the explantion, steps and solution please )arrow_forwardA square coil that has 17.5 cm on each side containing 17 loops lies flat on your desk as shown on this page. A uniform magnetic field of magnitude 4.60 × 10-ST points into this page. If a 8.50-A clockwise Current flows through the coil. ca) determine the torque on the coil. N.m (b) which edge of the coil rises up? choose one 。 Bottom отор and explain. O Right • None of these О Left.arrow_forward
- A circular loop of wire with a diameter of 13.0 cm is in the horizontal plane and carries of 1.70 A clockwise, as viewed from underneath. What is the magnitude magnetic field as the center of the loop? -T what is the direction of magnetic field at the center or down? please explain. of the loop? uparrow_forwardStarlord has a mass of 89.3 kg and Groot is pulling the bag with a force of 384. N at an angle of 35.0˚ as is shown in the figure below. What is the coefficient of kinetic friction if they are moving at a constant speed of 2.31 m/s?arrow_forwardEarly on in the video game Shadow of the Tomb Raider Lara Croft uses a winch to pull a heavy crate of stone up a 23.6° incline. If Lara causes the 66.0 kg crate to accelerate at 2.79 m/s2 up the ramp, what is the tension in the rope pulling the block? The coefficient of kinetic friction between the block and the ground is 0.503.arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





