Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 28, Problem 28.17P
Consider die combination of resistors shown in Figure P28.17. (a) Kind die equivalent resistance between points a and b. (b) If a voltage of 35.0 V is applied between points a and b, find the current in each resistor.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
www
R2
R,
www
R3
V
A 5-year old has nothing better to do
than to connect three resistors to a voltage source as shown. The resistors are
R1=49 2, R2=62 2, and R3=D16 2, respectively, and the voltage source has 1.5 Volts.
What is the total resistance?
Submit Answer
Tries 0/2
What is the current through the voltage source?
Four resistors are connected to a battery as shown in the
figure. The current through the battery is I, the battery's
electromotive force (emf) is & = 4.85 V, and the resistor
values are R₁ = R, R₂ = 2R, R3 = 4R, and R4 = 3R. Find
the voltages across each resistor.
V₁
=
V₂ =
V3 =
V4=
TOOLS
y
x10
V
V
V
V
R₁ = R
www
R₂=
= 2R
R₁=3R
ww
R₂ = 4R
Find (a) the equivalent resistance of the circuit in Figure P28.60, (b) the potential difference across each resistor, (c) each current indicated in Figure P28.60, and (d) the power delivered to each resistor.
Chapter 28 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 28 - To maximize the percentage of the power from the...Ch. 28 - With the switch in the circuit of Figure 27.4a...Ch. 28 - With the switch in the circuit of Figure 27.6a...Ch. 28 - Prob. 28.4QQCh. 28 - Consider the circuit in Figure 27.17 and assume...Ch. 28 - Is a circuit breaker wired (a) in series with the...Ch. 28 - A battery has some internal resistance. (i) Clan...Ch. 28 - The terminals of a battery are connected across...Ch. 28 - When operating on a 120-V circuit, an electric...Ch. 28 - If the terminals of a battery with zero internal...
Ch. 28 - Prob. 28.6OQCh. 28 - What is the time constant of the circuit shown in...Ch. 28 - When resistors with different resistances are...Ch. 28 - When resistors with different resistances are...Ch. 28 - The terminals of a battery are connected across...Ch. 28 - Are the two headlights of a car wired (a) in...Ch. 28 - In the circuit shown in Figure OQ28.12, each...Ch. 28 - Prob. 28.13OQCh. 28 - A circuit consists of three identical lamps...Ch. 28 - A series circuit consists of three identical lamps...Ch. 28 - Suppose a parachutist lands on a high-voltage wire...Ch. 28 - A student claims that the second of two lightbulbs...Ch. 28 - Why is ii possible for a bird to sit on a...Ch. 28 - Given three lightbulbs and a battery, sketch as...Ch. 28 - Prob. 28.5CQCh. 28 - Referring to Figure CQ28.6, describe what happens...Ch. 28 - Prob. 28.7CQCh. 28 - (a) What advantage does 120-V operation offer over...Ch. 28 - Prob. 28.9CQCh. 28 - Prob. 28.10CQCh. 28 - A battery has an emf of 15.0 V. The terminal...Ch. 28 - Two 1.50-V batterieswith their positive terminals...Ch. 28 - An automobile battery has an emf of 12.6 V and 171...Ch. 28 - As in Example 27.2, consider a power supply with...Ch. 28 - Three 100- resistors are connected as shown in...Ch. 28 - Prob. 28.6PCh. 28 - What is the equivalent resistance of the...Ch. 28 - Consider the two circuits shown in Figure P27.5 in...Ch. 28 - Consider the circuit shown in Figure P28.9. Find...Ch. 28 - (a) You need a 45- resistor, but the stockroom has...Ch. 28 - A battery with = 6.00 V and no internal...Ch. 28 - A battery with emf and no internal resistance...Ch. 28 - (a) Kind the equivalent resistance between points...Ch. 28 - (a) When the switch S in the circuit of Figure...Ch. 28 - Prob. 28.15PCh. 28 - Four resistors are connected to a battery as shown...Ch. 28 - Consider die combination of resistors shown in...Ch. 28 - For the purpose of measuring the electric...Ch. 28 - Calculate the power delivered to each resistor in...Ch. 28 - Why is the following situation impossible? A...Ch. 28 - Consider the circuit shown in Figure P28.21 on...Ch. 28 - In Figure P28.22, show how to add just enough...Ch. 28 - The circuit shown in Figure P27.17 is connected...Ch. 28 - For the circuit shown in Figure P28.24, calculate...Ch. 28 - What are the expected readings of (a) the ideal...Ch. 28 - The following equations describe an electric...Ch. 28 - Taking R = 1.00 k and = 250 V in Figure P27.19,...Ch. 28 - You have a faculty position at a community college...Ch. 28 - The ammeter shown in Figure P28.29 reads 2.00 A....Ch. 28 - In the circuit of Figure P28.30, determine (a) the...Ch. 28 - Using Kirchhoffs rules, (a) find (he current in...Ch. 28 - In the circuit of Figure P27.20, the current I1 =...Ch. 28 - In Figure P28.33, find (a) the current in each...Ch. 28 - For the circuit shown in Figure P27.22, we wish to...Ch. 28 - Find the potential difference across each resistor...Ch. 28 - (a) Can the circuit shown in Figure P27.21 be...Ch. 28 - An uncharged capacitor and a resistor are...Ch. 28 - Consider a series RC circuit as in Figure P28.38...Ch. 28 - A 2.00-nF capacitor with an initial charge of 5.10...Ch. 28 - A 10.0-F capacitor is charged by a 10.0-V battery...Ch. 28 - In the circuit of Figure P27.25, the switch S has...Ch. 28 - In the circuit of Figure P27.25, the switch S has...Ch. 28 - The circuit in Figure P28.43 has been connected...Ch. 28 - Show that the integral 0e2t/RCdtin Example 27.11...Ch. 28 - A charged capacitor is connected to a resistor and...Ch. 28 - Prob. 28.46PCh. 28 - Prob. 28.47PCh. 28 - Turn on your desk lamp. Pick up the cord, with...Ch. 28 - Assume you have a battery of emf and three...Ch. 28 - Find the equivalent resistance between points a...Ch. 28 - Four 1.50-V AA batteries in series are used to...Ch. 28 - Four resistors are connected in parallel across a...Ch. 28 - The circuit in Figure P27.35 has been connected...Ch. 28 - The circuit in Figure P27.34a consists of three...Ch. 28 - For the circuit shown in Figure P28.55. the ideal...Ch. 28 - The resistance between terminals a and b in Figure...Ch. 28 - (a) Calculate the potential difference between...Ch. 28 - Why is the following situation impossible? A...Ch. 28 - A rechargeable battery has an emf of 13.2 V and an...Ch. 28 - Find (a) the equivalent resistance of the circuit...Ch. 28 - When two unknown resistors are connected in series...Ch. 28 - When two unknown resistors are connected in series...Ch. 28 - The- pair of capacitors in Figure P28.63 are fully...Ch. 28 - A power supply has an open-circuit voltage of 40.0...Ch. 28 - The circuit in Figure P27.41 contains two...Ch. 28 - Two resistors R1 and R2 are in parallel with each...Ch. 28 - Prob. 28.67APCh. 28 - A battery is used to charge a capacitor through a...Ch. 28 - A young man owns a canister vacuum cleaner marked...Ch. 28 - (a) Determine the equilibrium charge on the...Ch. 28 - Switch S shown in Figure P28.71 has been closed...Ch. 28 - Three identical 60.0-W, 120-V lightbulbs are...Ch. 28 - A regular tetrahedron is a pyramid with a...Ch. 28 - An ideal voltmeter connected across a certain...Ch. 28 - In Figure P27.47, suppose the switch has been...Ch. 28 - Figure P27.48 shows a circuit model for the...Ch. 28 - The student engineer of a campus radio station...Ch. 28 - The circuit shown in Figure P28.78 is set up in...Ch. 28 - An electric teakettle has a multiposition switch...Ch. 28 - A voltage V is applied to a series configuration...Ch. 28 - In places such as hospital operating rooms or...Ch. 28 - The switch in Figure P27.51a closes when Vc23Vand...Ch. 28 - The resistor R in Figure P28.83 receives 20.0 W of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A lightbulb is connected to a variable power supply. As the potential across the bulb is varied, the resulting current and the filaments temperature are measured. The data are listed in Table P28.38. a. Find R for each entry in Table P28.38, and then plot R as a function of T. b. Assume that room temperature is at 293 K. Find R0 (resistance at room temperature). Comment on your result.arrow_forwardFigure P29.46 shows a circuit with a 12.0-V battery connected to four resistors. How much power is delivered to each resistor?arrow_forwardA battery has an emf of 15.0 V. The terminal voltage of the battery is 11.6 V when it is delivering 20.0 W of power to an external load resistor R. (a) What is the value of R? (b) What is the internal resistance of the battery?arrow_forward
- In the figure the ideal batteries have emfs E, = 9.0 V and E, = 0.500 E,, and the resistances are each 3.38 Q. What is the value of current in (a) resistor 2 and (b) resistor 3? Re i2 RA (a) Number i 1.33 Units A (b) Number Unitsarrow_forwardWhat is the time constant of the circuit shown in Figure OQ28.7? Each of the five resistors has resistance R. and each of the five capacitors has capacitance C. The internal resistance of the battery is negligible. (a) RC. (b) 5RC. (c) 10RC (d) 25RC (e) none of those answersarrow_forwardA resistor with a 15.0 V potential difference across its ends emits thermal energy at a rate of 327 W. a) What is the resistance? B) What is the current in this resistor?arrow_forward
- Four resistors are connected to a battery as shown in the R,=2R figure. The current through the battery is I, the battery's electromotive force (emf) is E = 9.65 V, and the resistor values are R = R, R2 = 2R, R3 4R, and R = 3R. !! R, = R Find the voltages across each resistor. R,= 3R V = V V2 = V R, = 4R V3 = V V4 = V. wwarrow_forwardIn the figure the ideal batteries have emfs E, = 9.0 V and E2 = 0.500 E1, and the resistances are each 3.38 N. What is the value of current in (a) resistor 2 and (b) resistor 3? R (a) Number i Units (b) Number i Unitsarrow_forwardA 22 Ω resistor and a 4 Ω resistor are connected in series to an ideal 12 V battery.Find the current in each resistor.Answer in units of A.Find the potential difference across the firstresistor.Answer in units of V.Find the potential difference across the secondresistor.Answer in units of V.arrow_forward
- 3. 3 resistors are connected to a 9 v battery. The values are listed in the table below. a) Draw a picture of the 3 resistors connected in parallel with the battery. b) Calculate the total resistance. Show all work c) Calculate the current through, voltage across and power used by each resistor. R (2) I (A) V (v) P (W) A 4 B C 8 Only Show work for Resistor A: I: V: P:arrow_forwardA circuit consisting of three ideal batteries with voltages E1, E2, and E3, and three ideal resistors with resistances R1, R2, and R3, is shown in the figure. Calculate the current IP through point P. Let the sign of the current correspond to its direction, with "up" being positive. E1=17.5 V, E2=15.0 V, E3=30.0 V ?1=3.90 kΩ, ?2=13.0 kΩ, ?3=8.75 kΩarrow_forwardFour resistors are connected to a battery as shown in the figure. The current through the battery is I, the battery's electromotive force (emf) is & = 5.75 V, and the resistor values are R₁ = R, R₂ = 2R, R3 = 4R, and R₁ = 3R. Find the voltages across each resistor. V₁ = V/₂ = V3 = V4 = V V V V R₁ = R www R₂ = = 2R www R₁=3R ww R₂ = 4Rarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
How To Solve Any Resistors In Series and Parallel Combination Circuit Problems in Physics; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=eFlJy0cPbsY;License: Standard YouTube License, CC-BY