Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 28, Problem 28.82CP
The switch in Figure P27.51a closes when
Figure P27.51
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A parallel plate capacitor has surface dimension of 40.0 cm x 20.0 cm. The capacitor is connected to a dc power supply of 50.0 V and a material with = 200 is inserted in between the plates. If the capacitance of the capacitor is 18 F, find
a. the pate separation, d in meterb. the energy density of this capacitor, u in Joule per cubic meter
Problem 8: A capacitor has a potential difference of Vo = 370 V between
the plates. When the switch S is closed, it is discharged through a resistor
of R = 10.5 k2. At time t = 10 seconds after the switch is closed, the
potential difference between the capacitor plates equals Vc = 1.0 V.
S
Randomized Variables
Vo = 370 V
R = 10.5 k2
Part (a) Calculate the capacitance of the capacitor in farads.
Numeric : A numeric value is expected and not an expression.
C =
Part (b) Calculate the maximum current Imax that passes through the resistor, in Amperes.
Numeric : A numeric value is expected and not an expression.
Imax =
Part (c) Calculate the current I at time t, in Amperes.
Numeric : A numeric value is expected and not an expression.
I =
R1
S
R3.
R2
4. Determine in the current in each resistor given that R1 = R2 = R3 = 12,
the capacitance C = 0.5 µF, and potential across the batter of E = 2V when
the switch is closed at t = 0. Determine then after some time (t = x) after the
switch is closed the currents in each resistor.
Chapter 28 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 28 - To maximize the percentage of the power from the...Ch. 28 - With the switch in the circuit of Figure 27.4a...Ch. 28 - With the switch in the circuit of Figure 27.6a...Ch. 28 - Prob. 28.4QQCh. 28 - Consider the circuit in Figure 27.17 and assume...Ch. 28 - Is a circuit breaker wired (a) in series with the...Ch. 28 - A battery has some internal resistance. (i) Clan...Ch. 28 - The terminals of a battery are connected across...Ch. 28 - When operating on a 120-V circuit, an electric...Ch. 28 - If the terminals of a battery with zero internal...
Ch. 28 - Prob. 28.6OQCh. 28 - What is the time constant of the circuit shown in...Ch. 28 - When resistors with different resistances are...Ch. 28 - When resistors with different resistances are...Ch. 28 - The terminals of a battery are connected across...Ch. 28 - Are the two headlights of a car wired (a) in...Ch. 28 - In the circuit shown in Figure OQ28.12, each...Ch. 28 - Prob. 28.13OQCh. 28 - A circuit consists of three identical lamps...Ch. 28 - A series circuit consists of three identical lamps...Ch. 28 - Suppose a parachutist lands on a high-voltage wire...Ch. 28 - A student claims that the second of two lightbulbs...Ch. 28 - Why is ii possible for a bird to sit on a...Ch. 28 - Given three lightbulbs and a battery, sketch as...Ch. 28 - Prob. 28.5CQCh. 28 - Referring to Figure CQ28.6, describe what happens...Ch. 28 - Prob. 28.7CQCh. 28 - (a) What advantage does 120-V operation offer over...Ch. 28 - Prob. 28.9CQCh. 28 - Prob. 28.10CQCh. 28 - A battery has an emf of 15.0 V. The terminal...Ch. 28 - Two 1.50-V batterieswith their positive terminals...Ch. 28 - An automobile battery has an emf of 12.6 V and 171...Ch. 28 - As in Example 27.2, consider a power supply with...Ch. 28 - Three 100- resistors are connected as shown in...Ch. 28 - Prob. 28.6PCh. 28 - What is the equivalent resistance of the...Ch. 28 - Consider the two circuits shown in Figure P27.5 in...Ch. 28 - Consider the circuit shown in Figure P28.9. Find...Ch. 28 - (a) You need a 45- resistor, but the stockroom has...Ch. 28 - A battery with = 6.00 V and no internal...Ch. 28 - A battery with emf and no internal resistance...Ch. 28 - (a) Kind the equivalent resistance between points...Ch. 28 - (a) When the switch S in the circuit of Figure...Ch. 28 - Prob. 28.15PCh. 28 - Four resistors are connected to a battery as shown...Ch. 28 - Consider die combination of resistors shown in...Ch. 28 - For the purpose of measuring the electric...Ch. 28 - Calculate the power delivered to each resistor in...Ch. 28 - Why is the following situation impossible? A...Ch. 28 - Consider the circuit shown in Figure P28.21 on...Ch. 28 - In Figure P28.22, show how to add just enough...Ch. 28 - The circuit shown in Figure P27.17 is connected...Ch. 28 - For the circuit shown in Figure P28.24, calculate...Ch. 28 - What are the expected readings of (a) the ideal...Ch. 28 - The following equations describe an electric...Ch. 28 - Taking R = 1.00 k and = 250 V in Figure P27.19,...Ch. 28 - You have a faculty position at a community college...Ch. 28 - The ammeter shown in Figure P28.29 reads 2.00 A....Ch. 28 - In the circuit of Figure P28.30, determine (a) the...Ch. 28 - Using Kirchhoffs rules, (a) find (he current in...Ch. 28 - In the circuit of Figure P27.20, the current I1 =...Ch. 28 - In Figure P28.33, find (a) the current in each...Ch. 28 - For the circuit shown in Figure P27.22, we wish to...Ch. 28 - Find the potential difference across each resistor...Ch. 28 - (a) Can the circuit shown in Figure P27.21 be...Ch. 28 - An uncharged capacitor and a resistor are...Ch. 28 - Consider a series RC circuit as in Figure P28.38...Ch. 28 - A 2.00-nF capacitor with an initial charge of 5.10...Ch. 28 - A 10.0-F capacitor is charged by a 10.0-V battery...Ch. 28 - In the circuit of Figure P27.25, the switch S has...Ch. 28 - In the circuit of Figure P27.25, the switch S has...Ch. 28 - The circuit in Figure P28.43 has been connected...Ch. 28 - Show that the integral 0e2t/RCdtin Example 27.11...Ch. 28 - A charged capacitor is connected to a resistor and...Ch. 28 - Prob. 28.46PCh. 28 - Prob. 28.47PCh. 28 - Turn on your desk lamp. Pick up the cord, with...Ch. 28 - Assume you have a battery of emf and three...Ch. 28 - Find the equivalent resistance between points a...Ch. 28 - Four 1.50-V AA batteries in series are used to...Ch. 28 - Four resistors are connected in parallel across a...Ch. 28 - The circuit in Figure P27.35 has been connected...Ch. 28 - The circuit in Figure P27.34a consists of three...Ch. 28 - For the circuit shown in Figure P28.55. the ideal...Ch. 28 - The resistance between terminals a and b in Figure...Ch. 28 - (a) Calculate the potential difference between...Ch. 28 - Why is the following situation impossible? A...Ch. 28 - A rechargeable battery has an emf of 13.2 V and an...Ch. 28 - Find (a) the equivalent resistance of the circuit...Ch. 28 - When two unknown resistors are connected in series...Ch. 28 - When two unknown resistors are connected in series...Ch. 28 - The- pair of capacitors in Figure P28.63 are fully...Ch. 28 - A power supply has an open-circuit voltage of 40.0...Ch. 28 - The circuit in Figure P27.41 contains two...Ch. 28 - Two resistors R1 and R2 are in parallel with each...Ch. 28 - Prob. 28.67APCh. 28 - A battery is used to charge a capacitor through a...Ch. 28 - A young man owns a canister vacuum cleaner marked...Ch. 28 - (a) Determine the equilibrium charge on the...Ch. 28 - Switch S shown in Figure P28.71 has been closed...Ch. 28 - Three identical 60.0-W, 120-V lightbulbs are...Ch. 28 - A regular tetrahedron is a pyramid with a...Ch. 28 - An ideal voltmeter connected across a certain...Ch. 28 - In Figure P27.47, suppose the switch has been...Ch. 28 - Figure P27.48 shows a circuit model for the...Ch. 28 - The student engineer of a campus radio station...Ch. 28 - The circuit shown in Figure P28.78 is set up in...Ch. 28 - An electric teakettle has a multiposition switch...Ch. 28 - A voltage V is applied to a series configuration...Ch. 28 - In places such as hospital operating rooms or...Ch. 28 - The switch in Figure P27.51a closes when Vc23Vand...Ch. 28 - The resistor R in Figure P28.83 receives 20.0 W of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For the circuit in the figure, at t = 0 the switch S is closed with the capacitor uncharged. If C = 55 µF, ɛ = 80V, and R = 4 kN, what is the charge (in mC) on the capacitor when the current in the circuit is = 3.5 mA? S R + Select one: O A. 5.67 ОВ. 4.15 OC. 5.17 O D. 3.63 E. 2.48arrow_forward(a) What is the average power output of a heart defibrillator that dissipates 400 J of energy in 10.0 ms? (b) Considering the high-power output, why doesn’t the defibrillator produce serious bums?arrow_forwardThe switch in the circuit has been in position a for a long time, so the capacitor is fully charged. The switch is changed to position b at t = 0. a. What is the current in the circuit immediately after the switch is changed to b? b. What is the current in the circuit 25 us later? C. What is the charge Q on the capacitor 25 µs later? 9.0 V 1.0 μF 10 Ωarrow_forward
- A capacitor of capacitance C = 9 µF has been charged so that the potential difference between its plates is Vo = 240 V. The capacitor is then connected to a resistor of resistance R = 13 kQ. The switch S is closed, and the capacitor begins to discharge. Randomized Variables C = 9 μF Vo = 240 V R = 13 kQ Part (a) Calculate the time constant 7 of the circuit in seconds. Part (b) Calculate the charge Qo on the capacitor before the switch is closed, in coulombs. Part (c) Calculate the current lo immediately after the switch is closed, in amperes. Io = R m Qarrow_forwardK, and a generator of voltage V. Mark as true or false the following statements concerning the stor phase of V, V, V, Vc and VR- 1. V, and VR are in phase. 2. Vị leads Ve by 90°. 3. V is at angle o relative to VR- 4. VL-Vc is in phase with V,. 5. Vc lags VR by 90°. 5 give V. = 10.76 V. V.=5.68 V.arrow_forwardS 3. For the circuit shown to the right, the resistance is 4,000 Ohms, the capacitance is 100x10-6 F, and the battery is 30 V. + C a. What is the time constant for the circuit?. b. What is the current in the circuit at t = 0 and t = infinity? c. What is the current in the circuit as a function of time?arrow_forward
- 4. The circuit contains four parallel plate capacitors, all initially uncharged and with no dielectric material between their plates. A switch is closed to complete the circuit at time t=0, so current begins to flow at that time and we wait enough time for the capacitors to become (very close to) fully charged. a. What is the equivalent capacitance of this circuit? b. What is the charge stored on the 125 µF capacitor? If we now insert a neoprene rubber dielectric into all of the capacitors, how will the answers change? c. What is the equivalent capacitance of this circuit? d. What is the charge stored on the 125 µF capacitor?arrow_forwardQI. A capacitor consists of two circular plates of radius a separated by a distance d (assume d a. (A) Use Gauss' Law to find the electric field between the plates as a function of time t, in terms of q(1), a, ɛ, and z. The vertical direction is the k direction. (B)Now take an imaginary flat disc of radius rarrow_forward. Calculate current across the capacitor shown in Fig. P8.6 if the voltage input is v1(t)=30 cos (320t-50°) V . v(t) i(t) Figure P8.6 For a current i(t) = C cos(wt+P), enter the value of the phase angle (P). (be sure that your answer is between -180deg to 180deg.) Notes on entering solution: • Enter your solution in degrees Have your current in cosine format . Do not include units in your answer ex. 5° is entered as 5 C = 1 µFarrow_forwardConsider the circuit shown with ɛ1 6.0 V, E2 = 12 V, R1 = 100N, R2 = 2002, and R3 = 3002. One point of the circuit is grounded (V = 0). What is the electric potential at point A and the direction of current in R1? A R2 R3 R1- Ez A. 1.91 V, upward B. 1.91 V, downward C. 3.82 V, upward D. 3.82 V, downwardarrow_forwardQuestion A3 A large capacitor of 3000 µF is charged by a constant current. After 1 minute it reaches a voltage of 100 V. At that voltage, the charging circuit is disconnected. a) Calculate the charging current. b) A second identical capacitor is connected across the capacitor, using wires with 1 kN re- sistance. Sketch a graph of the voltages on the two capacitors as a function of time, with appropriate numbers and units marked on the axes.arrow_forwardThe capacitor in the circuit shown is fully charged by a 24 V battery. The switch is closed at t = 0. At sometime after the switch is closed, the voltage across the capacitor is measured to be 10 V. What is the current in the circuit at this time, in Ampere? C = 3.0 µF, and R = 2.0 02. Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement. Cilarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY