![Fundamentals of General, Organic, and Biological Chemistry (8th Edition)](https://www.bartleby.com/isbn_cover_images/9780134015187/9780134015187_largeCoverImage.gif)
Concept explainers
Classify the following activities according to the fields of study listed in Table 27.2.
- (a) Identification of genes that perform identical functions in mice and humans.
- (b) Creation of a variety of wheat that will not be harmed by an herbicide that kills weeds that threaten wheat crops.
- (c) Screening of an individual’s genome to choose the most appropriate pain-killing medication for that person.
- (d) Computer analysis of base-sequence information from groups of people with and without a given disease to discover where the disease-causing polymorphism lies.
Table 27.2 Genomics-Related Fields of Study
A collective teem foe the application of biological and biochemical research to the development of products that improve the health of humans, other animals, and plants. |
Bioinformatics The use of computers to manage and interpret genomic information and to make predictions about biological systems. Applications of bioinformatics include studies of individual genes and their functions, drug design, and drug development. |
Functional genomics Use of genome sequences to solve biological problems |
Comparative genomics Comparison of the genome sequences of different organisms to discover regions with similar functions and perhaps similar evolutionary origins |
Proteomics Study of the complete set of proteins coded for by a genome or synthesized within a given type of cell, including the quest for an understanding of the role of each protein in healthy or diseased conditions. This understanding has potential application in drug design and is being pursued by more than one commercial organization |
Pharmacogenomics The genetic basis of responses to drug treatment. Goals include the design of more effective drugs and an understanding of why certain drugs work in some patients but not in others. |
Pharmacogenetics The matching of drugs to individuals based on the content of their personal genome m order to avoid administration of drugs that are ineffective or toxic and focus on drugs that are most effective for that individual |
Toxicogenomics A newly developing application that combines genomics and bioinformatics m studying how toxic agents affect genes and in screening possibly harmful agents. |
Genetic engineering Alteration of the genetic material of a cell or an organism The goals may be to make the organism produce new substances or perform new functions. Examples are introduction of a gene that causes bacteria to produce a desired protein or allows a crop plant to withstand the effects of a pesticide that repels harmful insects. |
Gene therapy Alteration of an individual’s genetic makeup with the goal of curing or preventing a disease. |
Bioethics The ethical implications of how knowledge of the human genome is used. |
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
![Blurred answer](/static/blurred-answer.jpg)
Chapter 27 Solutions
Fundamentals of General, Organic, and Biological Chemistry (8th Edition)
Additional Science Textbook Solutions
Anatomy & Physiology (6th Edition)
Biology: Life on Earth with Physiology (11th Edition)
Campbell Biology (11th Edition)
General, Organic, and Biological Chemistry - 4th edition
Human Biology: Concepts and Current Issues (8th Edition)
- 13. What is the IUPAC name of this compound? A) 5-hydroxy-3,3-dimethylpentanoic acid B) 3,3-dimethylpentanoic acid C) 3,3-dimethyl-1-oxo-1,5-pentanediol D) 1,5-dihydroxy-3,3-dimethylpentanal E) 4-hydroxy-2,2-dimethylbutanoic acid HO OHarrow_forwardHelp me understand how carbon disulfide leads to toxicity in the brain, using terms like distal axonopathy, neurofilaments, covalent cross-linking, adducts, etc.,...please intuitively explain what is happening and where and the effects of it. For example, I know that CS2 reacts with amide and sulfhydryl groups on proteins, but what proteins exactly and where are they located?arrow_forwardWhat is the standard free energy change (in kJ/mole) of the spontaneous reaction between Oxygen and NADH to form H2O2 and NAD+?arrow_forward
- Redox Chemistry: Give standard free energy changes expected for the following reactions:-Succinate -> fumarate (using FAD/FADH2)-Oxaloacetate -> Malate (using NAD/NADH)-NADH --> NAD+ (using FMN/FMNH2)-CoQ --> CoQH2 (using Cytochrome C)arrow_forwardGive examples of balanced redox reactions that match the following:-Catabolic-Anabolic-Oxidative-Reductivearrow_forwardIf there are 20uM of a GLUT2 transporter on the surface of a cell, each able to move 8 per second, and 50mM glucose outside of the cell, what is the flux into the cell in mM/sec?arrow_forward
- A transporter is responsible for antiporting calcium and glucose. The transporter brings glucose into the cell and sends calcium out of the cell. If blood [calcium] = 2.55mM and intracellular [calcium] = 7uM, blood [glucose] = 5.2mM, and intracellular [glucose] = 40uM, what is the free energy of transport? Assume a membrane potential of 62mV (negative inside).arrow_forwardAn ATP-coupled transporter is used to import 1 phosphate from the extracellular environment. Intracellular phosphate exists at 65mM, while it is 2mM outside.Assume a free energy change of ATP hydrolysis of -42.7 kJ/mol. What is the net free energy change of the coupled reaction? Assume a membrane potential of 70mV.arrow_forwardAnother transporter brings 3 chloride ions into the cell. Outside, chloride has a concentration of 107mM, and 4mM inside the cell. Assuming a membrane potential of 62mV (negative inside), what is the free energy of transport of these ions?arrow_forward
- For the Oxaloacetate -> Malate reaction, assume the normal ratio of NAD/NADH, what is the maximum ratio of Malate/Oxaloacetate that will allow reaction progress?arrow_forwardA particular particle is trying to cross a membrane by simple diffusion from a high concentration of 20mM to a low concentration of 20uM. If a membrane is 15uM in width, and the diffusion coefficient of the particle is 5 uM/sec, what is the influx in uM/sec?arrow_forwardMechanisms: 1. Give a full arrow-pushing mechanism for the hydrolysis of the gamma phosphate of ATP by an ATPase. 2. Give a full arrow pushing mechanism of the spontaneous redox reaction between NAD+/NADH and oxaloacetate/malate.arrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage Learning
- Concepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeCase Studies In Health Information ManagementBiologyISBN:9781337676908Author:SCHNERINGPublisher:CengagePrinciples Of Radiographic Imaging: An Art And A ...Health & NutritionISBN:9781337711067Author:Richard R. Carlton, Arlene M. Adler, Vesna BalacPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305251052/9781305251052_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337392938/9781337392938_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305389892/9781305389892_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168116/9781938168116_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337711067/9781337711067_smallCoverImage.jpg)