Concept explainers
To find the asymptotes and holes of the function
Answer to Problem 68E
Explanation of Solution
Given:
Function:
Calculation:
Intercepts:
Let
To find x intercepts, put y = 0,
So, x intercept is (0.667, 0).
To find y intercepts, put x = 0,
So, y intercept is (0, -2).
Asymptotes:
Vertical asymptotes:
To find vertical asymptotes, put denominator of the given function equal to zero.
Horizontal asymptotes:
As the degree of numerator is equal to the degree of the denominator, the horizontal asymptote is
Slant asymptotes:
As the degree of numerator is equal to the degree of the denominator, the slant asymptote does not exist for given function.
Holes:
Here, the given function contains one common factor in numerator and denominator i.e..,
To find hole of the function, equate common factor equal to zero.
So, the hole of function is
Calculation for graph:
Consider
Values of x | Values of f (x) |
0 | -2 |
1 | 0.333 |
-1 | 5 |
2 | Undefined |
-2 | 1.1818 |
By taking different values of x, the graph can be plotted.
Graph:
Interpretation:
By observing graph, it is clear that
The x intercept is (0.667, 0),
The y intercept is (0, -2),
The vertical asymptotes are
The horizontal asymptote is
Chapter 2 Solutions
Precalculus with Limits: A Graphing Approach
- Find the length of the following curve. 3 1 2 N x= 3 -y from y 6 to y=9arrow_forward3 4/3 3213 + 8 for 1 ≤x≤8. Find the length of the curve y=xarrow_forwardGiven that the outward flux of a vector field through the sphere of radius r centered at the origin is 5(1 cos(2r)) sin(r), and D is the value of the divergence of the vector field at the origin, the value of sin (2D) is -0.998 0.616 0.963 0.486 0.835 -0.070 -0.668 -0.129arrow_forward
- 10 The hypotenuse of a right triangle has one end at the origin and one end on the curve y = Express the area of the triangle as a function of x. A(x) =arrow_forwardIn Problems 17-26, solve the initial value problem. 17. dy = (1+ y²) tan x, y(0) = √√3arrow_forwardcould you explain this as well as disproving each wrong optionarrow_forward
- could you please show the computation of this by wiresarrow_forward4 Consider f(x) periodic function with period 2, coinciding with (x) = -x on the interval [,0) and being the null function on the interval [0,7). The Fourier series of f: (A) does not converge in quadratic norm to f(x) on [−π,π] (B) is pointwise convergent to f(x) for every x = R П (C) is in the form - 4 ∞ +Σ ak cos(kx) + bk sin(kx), ak ‡0, bk ‡0 k=1 (D) is in the form ak cos(kx) + bk sin(kx), ak 0, bk 0 k=1arrow_forwardSolve the equation.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning