College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 25, Problem 56P
A python can detect thermal
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If emissivity of the body is equal to 1 and Stefan constant= 5.7x10-8 watt/m?. k°.
when a person is exchanging radiation energy with the environment of
temperature 25c° and the skin temperature is 33c°. Find the area of the person in
order to radiate 65.9 J/sec
O 1.2 m2
1.61 m2
O 1.32 m2
Problem: Radiation Related
The energy flux associated with solar radiation incident on the outer surface of the earth's atmosphere has been accurately measured and is known to be 1,368 W/m^2. The diameters of the sun and earth are 1.39 X 10^9 and 1.27 x 10^7 m, respectively, and the distance between the sun and the earth is 1.5 × 10^11 m.
(a) What is the emissive power of the sun?
(b) Approximating the sun's surface as black, what is its temperature?
(c) At what wavelength is the spectral emissive power of the sun a maximum?
(d) Assuming the earth's surface to be black and the sun to be the only source of energy for the earth, estimate the earth's surface temperature.
The human body has a surface area of approximately 1.8 m2, a surface temperature of approximately 30°C, and a typical emissivity at infrared wavelengths of e = 0.97. If we make the approximation that all photons are emitted at the wavelength of peak intensity, how many photons per second does the body emit?
Chapter 25 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 25 - Prob. 1CQCh. 25 - The rapid vibration accompanying the swimming...Ch. 25 - Prob. 3CQCh. 25 - Prob. 4CQCh. 25 - Prob. 5CQCh. 25 - Prob. 6CQCh. 25 - The power lines that run through your neighborhood...Ch. 25 - The magnetic flux passing through a coil of wire...Ch. 25 - There is a counterclockwise induced current in the...Ch. 25 - A magnet dropped through a clear plastic tube...
Ch. 25 - The conducting loop in Figure Q25.11 is moving...Ch. 25 - Figure Q25.12 shows two concentric, conducting...Ch. 25 - Figure Q25.13 shows conducting loops next to each...Ch. 25 - Two loops of wire are stacked vertically, one...Ch. 25 - Prob. 15CQCh. 25 - A bar magnet is pushed toward a loop of wire, as...Ch. 25 - Prob. 17CQCh. 25 - A metal wire is resting on a U-shaped conducting...Ch. 25 - Prob. 19CQCh. 25 - Old-fashioned roof-mounted television antennas...Ch. 25 - An AM radio detects the oscillating magnetic field...Ch. 25 - Prob. 22CQCh. 25 - Prob. 23CQCh. 25 - The frequency of a beam of light is increased but...Ch. 25 - Arc welding uses electric current to make an...Ch. 25 - A circular loop of wire has an area of 0.30 m2. It...Ch. 25 - In Figure Q25.27, a square loop is rotating in the...Ch. 25 - A diamond-shaped loop of wire is pulled at a...Ch. 25 - Figure Q25.29 shows a triangular loop of wire in a...Ch. 25 - A device called a flip coil can be used to measure...Ch. 25 - The electromagnetic waves that carry FM radio...Ch. 25 - The beam from a laser is focused with a lens,...Ch. 25 - A spacecraft in orbit around the moon measures its...Ch. 25 - A 6.0 mW vertically polarized laser beam passes...Ch. 25 - Communication with submerged submarines via radio...Ch. 25 - Prob. 36MCQCh. 25 - Prob. 1PCh. 25 - Prob. 2PCh. 25 - A l0-cm-long wire is pulled along a U-shaped...Ch. 25 - Figure P25.4 shows a 15-cm-long metal rod pulled...Ch. 25 - Prob. 5PCh. 25 - In the rainy season, the Amazon flows fast and...Ch. 25 - A delivery truck with 2.8-m-high aluminum sides is...Ch. 25 - Prob. 8PCh. 25 - Prob. 9PCh. 25 - Prob. 10PCh. 25 - Prob. 11PCh. 25 - At a typical location in the United States, the...Ch. 25 - Prob. 13PCh. 25 - A magnet and a coil are oriented as shown in...Ch. 25 - A 1000-turn coil of wire 2.0 cm in diameter is in...Ch. 25 - Figure P25.I6 shows a 100-turn coil of wire of...Ch. 25 - Figure P25.17 shows a 10-cm-diameter loop in three...Ch. 25 - The plane of a loop of wire is perpendicular to a...Ch. 25 - Prob. 19PCh. 25 - Prob. 20PCh. 25 - Prob. 21PCh. 25 - A 5.0-cm-diameter loop of wire has resistance 1.2...Ch. 25 - Prob. 23PCh. 25 - Prob. 24PCh. 25 - Prob. 25PCh. 25 - Prob. 26PCh. 25 - A microwave oven operates at 2.4 GHz with an...Ch. 25 - The maximum allowed leakage of microwave radiation...Ch. 25 - Prob. 29PCh. 25 - Prob. 30PCh. 25 - At what distance from a 10 mW point source of...Ch. 25 - Prob. 32PCh. 25 - A radio antenna broadcasts a 1.0 MHz radio wave...Ch. 25 - A 200 MW laser pulse is focused with a lens to a...Ch. 25 - The intensity of a polarized electromagnetic wave...Ch. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - The polarization of a helium-neon laser can change...Ch. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - One recent study has shown that x rays with a...Ch. 25 - Prob. 44PCh. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - Prob. 47PCh. 25 - Prob. 48PCh. 25 - Prob. 49PCh. 25 - A particular species of copepod, a small marine...Ch. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - While using a dimmer switch to investigate a new...Ch. 25 - Prob. 54PCh. 25 - Prob. 55PCh. 25 - A python can detect thermal radiation with...Ch. 25 - If astronomers look toward any point in outer...Ch. 25 - A 100-turn, 2.0-cm diameter coil is at rest in a...Ch. 25 - A 25-turn, 10.0-cm-diameter coil is oriented in a...Ch. 25 - People immersed in strong unchanging magnetic...Ch. 25 - Prob. 61GPCh. 25 - Prob. 62GPCh. 25 - A 20-cm-long, zero-resistance wire is pulled...Ch. 25 - A TMS (transeranial magnetic stimulation) device...Ch. 25 - The 10-cm-wide, zero-resistance wire shown in...Ch. 25 - Experiments to study vision often need to track...Ch. 25 - A LASIK vision correction system uses a laser that...Ch. 25 - When the Voyager 2 spacecraft passed Neptune in...Ch. 25 - A new cordless phone emits 4.0 mW at 5.8 GHz. The...Ch. 25 - In reading the instruction manual that came with...Ch. 25 - Unpolarized light passes through a vertical...Ch. 25 - Prob. 73GPCh. 25 - Prob. 74GPCh. 25 - What is the wavelength of 27 MHz radio waves? A....Ch. 25 - If the frequency of the radio waves is increased,...Ch. 25 - Prob. 77MSPPCh. 25 - The metal detector will not detect insulators...Ch. 25 - A metal detector can detect the presence of metal...Ch. 25 - Which of the following changes would not produce a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
2. Define equilibrium population. Outline the conditions that must be met for a population to stay in genetic e...
Biology: Life on Earth (11th Edition)
Why does a one-step growth curve differ in shape from that of a bacterial growth curve?
Brock Biology of Microorganisms (15th Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
In rabbits, chocolate-colored fur (w+) is dominant to white fur (w), straight fur (c+) is dominant to curly fur...
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- reaches the ground with an intensity of about 1.0kW/m2 . A sunbather has a body surface area of 0.8 m2 facing the sun while reclining on a beach chair on a clear day. (a) how much energy from direct sunlight reaches the sunbather’s skin per second? (b) What pressure does the sunlight exert if it is absorbed?arrow_forwardA possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this solar sail. Suppose a sail of area A = 6.00 105 m2 and mass m =6.00 103 kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1 370 W/m2. (a) What force is exerted on the sail? (b) What is the sails acceleration? (c) Assuming the acceleration calculated in part (b) remains constant, find the time interval required for the sail to reach the moon, 3.84 108 m away, starting from rest at the Earth.arrow_forwardA dark red clay brick in space is continuously exposed to sunlight such that it absorbs 10 Watts of electromagnetic power. But under these conditions the brick's temperature is observed to be constant. a) Describe the energy flows into and out of the brick - what mechanisms are involved, and what are the relative sizes of those energy flows? b) The brick is instantly, painted black. (Don't worry about how.) Do the energy flows and temperature change? Explain.arrow_forward
- Assume the radiation from a heat lamp is monochromatic, with a wavelength of 1.5 μm . I =3.313 kW/m^2. a. What is the peak electric field strength, in kilovolts per meter? b. Find the peak magnetic field strength, in microtesla. c. How long, in seconds, will it take to increase the temperature of the 3.95-kg shoulder by 2.00°C, assuming that the shoulder absorbs all the radiation from the lamp and given that its specific heat is 3.47 × 103 J/(kg⋅°C)?arrow_forwardYou are studying temperature dynamics in a desert ecosystem in southeastern Arizona using a new technology that you have invented to track the movement of heat originating from a single source. You begin your study by measuring the electromagnetic energy being emitted from a lizard's skin, which you find is rapidly transported away by a breeze that replaces the warm air around the lizard with cooler air. The heat energy is transported by the wind up the face of a small mountain, where the air is cooler. On the mountain, the heat energy comes into contact with a mouse's skin, and the energy is transferred to the mouse. As more and more energy is transferred to the mouse, it begins to pant and sweat to cool itself down. Describe in order the modes of heat gain and loss that you have observed in your study. Group of answer choices Convection, conduction, radiation, evaporation Conduction, radiation, evaporation, convection Evaporation, convection, conduction, radiation Radiation,…arrow_forwardThe temperature of a student's skin is 33.0°C. At what wavelength does the radiation emitted from the skin reach its peak? umarrow_forward
- A python can detect thermal radiation from objects that differ in temperature from their environment as long as the received intensity of thermal radiation is greater than 0.60 W/m2. Your body emits a good deal of thermal radiation; a typical human body has a surface area of 1.8 m2, a surface temperature of 30∘C, and an emissivity e = 0.97 at infrared wavelengths. As we've seen, the intensity of a source of radiation decreases with the distance from the source. If you are outside on a cool, dark night, what is the maximum distance from which a python could detect your presence?arrow_forwardSolar radiation intensity averages to be 1366 W/m2 at the top of the Earth's atmosphere. What is the solar radiation intensity at the top of Mars' atmosphere? W/m2 What is the electric field strength on Mars due to solar radiation? V/marrow_forwardSunlight reaches the ground with an intensity of about 1.0 kW/m2 . A sunbather has a body surface area of 0.8 m2 facing the sun while reclining on a beach chair on a clear day. (a) how much energy from direct sunlight reaches the sunbather’s skin per second? (b) What pressure does the sunlight exert if it is absorbed?arrow_forward
- Solar cells generate a potential difference when exposed to sunlight. In an experiment, you wish to charge a rechargeable battery by connecting it in series to an array of solar cells. You perform the experiment outdoors, in direct sunlight, when the intensity of solar radiation is 1000 W/m2. However, your solar cells only have an efficiency of 13% (that is, only 13% of the sunlight power transmitted to the solar cells is delivered to the rechargeable battery). While the circuit is connected, you measure at one instant the potential difference across the battery to be 4.50 V and the current in the circuit to be 0.27 A. What is the area of the array of solar cells? m2arrow_forwardThe image attached is a neat copy of a photo of an electricity meter for a domestic solar array. The display shows the energy we sold to the electricity company on a winter's day. Each box is 100 W high and 1 hr wide. At the radius of the earth's orbit, the intensity of sunlight is I=1.4 kW.m–2 . (This means that 1.4 kW.m–2 passes through 1 square metre at right angles to the sun's rays.) The solar array in the previous question consists of 10 panels, each with area A=1.6 m2 . Under optimal conditions - with the sun at right angles to the array and no clouds in the sky - the array produces Pout=2.3 kW . What is the efficiency of the array? Power out/power in = _____ %.arrow_forwardThe intensity of sunlight reaching the earth is 1360 W/m2. Assuming all the sunlight is absorbed, what is the radiation-pressure force on the earth? Give your answer in newtons. Assuming all the sunlight is absorbed, what is the radiation-pressure force on the earth? Give your answer as a fraction of the sun's gravitational force on the earth.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY