
(a)
Interpretation:
The preparation of benzylamine from
Concept introduction:
Synthesis is one of the major areas in the field of

Answer to Problem 25.58P
The reaction for the preparation of benzylamine from benzyl bromide is,
Explanation of Solution
The given compound is benzyl bromide. The conversion of this to benzylamine occurs by using excess of ammonia through
Benzylamine is prepared from benzyl bromide by using excess of ammonia.
(b)
Interpretation:
The preparation of benzylamine from
Concept introduction:
Synthesis is one of the major areas in the field of organic chemistry. It can be a simple one-step reaction or it may involve many steps. Lithium aluminium hydride is a strong reducing agent. It is an inorganic compound which is used as a reducing agent in

Answer to Problem 25.58P
The preparation of benzylamine from
Explanation of Solution
The given compound is benzonitrile. The conversion of this to benzylamine occurs by using reagents like Lithium aluminium hydride. The reaction for the preparation of benzylamine from benzonitrile is shown below.
In this reaction, benzonitrile undergoes reduction with Lithium aluminium hydride in the presence of
Benzylamine is prepared from benzonitrile by using reagent Lithium aluminium hydride.
(c)
Interpretation:
The preparation of benzylamine from
Concept introduction:
Synthesis is one of the major areas in the field of organic chemistry. It can be a simple one-step reaction or it may involve many steps. Lithium aluminium hydride is a strong reducing agent. It is an inorganic compound which is used as a reducing agent in organic synthesis.

Answer to Problem 25.58P
The preparation of benzylamine from
Explanation of Solution
The given compound is benzamide. The conversion of this to benzylamine occurs by using reagents like Lithium aluminium hydride. The reaction for the preparation of benzylamine from benzamide is shown below.
In this reaction, benzamide undergoes reduction with Lithium aluminium hydride in the presence of
Benzylamine is prepared from benzamide by using reagent Lithium aluminium hydride.
(d)
Interpretation:
The preparation of benzylamine from
Concept introduction:
Synthesis is one of the major areas in the field of organic chemistry. It can be a simple one-step reaction or it may involve many steps. When an

Answer to Problem 25.58P
The preparation of benzylamine from
Explanation of Solution
The given compound is benzaldehyde. The conversion of this to benzylamine occurs by reductive animation with ammonia. The reaction for the preparation of benzylamine from benzaldehyde is shown below.
Benzylamine is prepared from benzaldehyde on reductive animation with ammonia.
(e)
Interpretation:
The preparation of benzylamine from
Concept introduction:
Synthesis is one of the major areas in the field of organic chemistry. It can be a simple one-step reaction or it may involve many steps. Lithium aluminium hydride is a strong reducing agent. It is an inorganic compound which is used as a reducing agent in organic synthesis.

Answer to Problem 25.58P
The preparation of benzylamine from
Explanation of Solution
The given compound is toluene. The conversion of this to benzylamine occurs by using reagents like potassium permanganate, thionyl chloride, ammonia, and Lithium aluminium hydride. The reactions for the preparation of benzylamine from toluene are shown below.
In the first step of reaction, toluene undergoes oxidation to form benzoic acid. In the second step, benzoic acid reacts with thionyl chloride to gives benzoyl chloride which further reacts with ammonia to form benzamide. In the final step, benzamide undergoes reduction with Lithium aluminium hydride in the presence of
Benzylamine is prepared from toluene by using reagents like potassium permanganate, thionyl chloride, ammonia, and Lithium aluminium hydride.
(f)
Interpretation:
The preparation of benzylamine from
Concept introduction:
Synthesis is one of the major areas in the field of organic chemistry. It can be a simple one-step reaction or it may involve many steps. Lithium aluminium hydride is a strong reducing agent. It is an inorganic compound which is used as a reducing agent in organic synthesis.

Answer to Problem 25.58P
Explanation of Solution
The given compound is benzoic acid. The conversion of this to benzylamine occurs by using reagents like, thionyl chloride, ammonia, and Lithium aluminium hydride. The reactions for the preparation of benzylamine from benzoic acid are shown below.
In the first step of reaction, benzoic acid reacts with thionyl chloride to gives benzoyl chloride which further reacts with ammonia to form benzamide. In the final step, benzamide undergoes reduction with Lithium aluminium hydride in the presence of
Benzylamine is prepared from benzoic acid by using reagents like thionyl chloride, ammonia, and Lithium aluminium hydride.
(g)
Interpretation:
The preparation of benzylamine from
Concept introduction:
Synthesis is one of the major areas in the field of organic chemistry. It can be a simple one-step reaction or it may involve many steps. Diazonium salts are prepared by the treatment of

Answer to Problem 25.58P
The preparation of benzylamine from
Explanation of Solution
The given compound is aniline. The conversion of this to benzylamine occurs by using reagents like nitrous acid, copper cyanide, and Lithium aluminium hydride. The reactions for the preparation of benzylamine from aniline are shown below.
In the first step of reaction, aniline reacts with nitrous acid to form diazonium salt which further reacts with copper cyanide to form benzonitrile. In the final step, benzonitrile undergoes reduction with Lithium aluminium hydride in the presence of
Benzylamine is prepared from aniline by using reagents like nitrous acid, copper cyanide, and Lithium aluminium hydride.
(h)
Interpretation:
The preparation of benzylamine from benzene is to be stated.
Concept introduction:
Synthesis is one of the major areas in the field of organic chemistry. It can be a simple one-step reaction or it may involve many steps. Friedel-craft alkylation is an electrophilic aromatic substitution. In this type of reaction, an alkyl cation acts as an electrophile. Electrophilic attack takes place to form a sigma complex.

Answer to Problem 25.58P
The preparation of benzylamine from benzene is,
Explanation of Solution
The given compound is benzene. The conversion of this to benzylamine occurs by using reagents like methyl chloride in the presence of aluminium chloride, potassium permanganate, thionyl chloride, ammonia, and Lithium aluminium hydride. The reactions for the preparation of benzylamine from benzene are shown below.
In the first step of reaction, benzene undergoes Friedel-craft alkylation reaction with methyl chloride to form toluene. In the second step, toluene undergoes oxidation to form benzoic acid. In the third step, benzoic acid reacts with thionyl chloride to gives benzoyl chloride which further reacts with ammonia to form benzamide. In the final step, benzamide undergoes reduction with Lithium aluminium hydride in the presence of
Benzylamine is prepared from benzene by using reagents like methyl chloride in the presence of aluminium chloride, potassium permanganate, thionyl chloride, ammonia, and Lithium aluminium hydride.
Want to see more full solutions like this?
Chapter 25 Solutions
Organic Chemistry
- For each reaction below, decide if the first stable organic product that forms in solution will create a new CC bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. དྲ。 ✗MgBr ? O CI Will the first product that forms in this reaction create a new C-C bond? Yes No • ? Will the first product that forms in this reaction create a new CC bond? Yes No × : ☐ Xarrow_forwardPredict the major products of this organic reaction: OH NaBH4 H ? CH3OH Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. ☐ : Sarrow_forwardPredict the major products of this organic reaction: 1. LIAIHA 2. H₂O ? Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. X : ☐arrow_forward
- For each reaction below, decide if the first stable organic product that forms in solution will create a new C - C bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. NH2 tu ? ? OH Will the first product that forms in this reaction create a new CC bond? Yes No Will the first product that forms in this reaction create a new CC bond? Yes No C $ ©arrow_forwardAs the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C-C bond as its major product: 1. MgCl ? 2. H₂O* If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If the major products of this reaction won't have a new CC bond, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. This reaction will not make a product with a new CC bond. G marrow_forwardIncluding activity coefficients, find [Hg22+] in saturated Hg2Br2 in 0.00100 M NH4 Ksp Hg2Br2 = 5.6×10-23.arrow_forward
- give example for the following(by equation) a. Converting a water insoluble compound to a soluble one. b. Diazotization reaction form diazonium salt c. coupling reaction of a diazonium salt d. indacator properties of MO e. Diazotization ( diazonium salt of bromobenzene)arrow_forward2-Propanone and ethyllithium are mixed and subsequently acid hydrolyzed. Draw and name the structures of the products.arrow_forward(Methanesulfinyl)methane is reacted with NaH, and then with acetophenone. Draw and name the structures of the products.arrow_forward
- 3-Oxo-butanenitrile and (E)-2-butenal are mixed with sodium ethoxide in ethanol. Draw and name the structures of the products.arrow_forwardWhat is the reason of the following(use equations if possible) a.) In MO preperation through diazotization: Addition of sodium nitrite in acidfied solution in order to form diazonium salt b.) in MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at low pH c.) In MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at pH 4.5 d.) Avoiding not cooling down the reaction mixture when preparing the diazonium salt e.) Cbvcarrow_forwardA 0.552-g sample of an unknown acid was dissolved in water to a total volume of 20.0 mL. This sample was titrated with 0.1103 M KOH. The equivalence point occurred at 29.42 mL base added. The pH of the solution at 10.0 mL base added was 3.72. Determine the molar mass of the acid. Determine the Ka of the acid.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning

