
(a)
Interpretation:
The number of lone pairs in the following structure has to be identified.
Concept Introduction:
Lone pair:
A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non-bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in
Delocalized lone pair:
The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.
Localized lone pair:
The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to
(b)
Interpretation:
The number of lone pairs in the following structure has to be identified.
Concept Introduction:
Lone pair:
A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non-bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.
Delocalized lone pair:
The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.
Localized lone pair:
The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to
(c)
Interpretation:
The number of lone pairs in the following structure has to be identified.
Concept Introduction:
Lone pair:
A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non-bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.
Delocalized lone pair:
The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.
Localized lone pair:
The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to
(d)
Interpretation:
The number of lone pairs in the following structure has to be identified.
Concept Introduction:
Lone pair:
A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non-bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.
Delocalized lone pair:
The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.
Localized lone pair:
The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to
(e)
Interpretation:
The number of lone pairs in the following structure has to be identified.
Concept Introduction:
Lone pair:
A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non-bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.
Delocalized lone pair:
The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.
Localized lone pair:
The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to
(f)
Interpretation:
The number of lone pairs in the following structure has to be identified.
Concept Introduction:
Lone pair:
A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non-bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.
Delocalized lone pair:
The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.
Localized lone pair:
The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to

Want to see the full answer?
Check out a sample textbook solution
Chapter 2 Solutions
Organic Chemistry, Binder Ready Version
- please solve this problem by telling me which boxes to check. Thank you in advance!arrow_forwardExplain what characteristics of metalloids are more like metals and which are more like nonmetals, based on Na, Mg, Fe, Cl, and Ar.arrow_forwardplease solve this, and help me know which boxes to check. Thank you so much in advance.arrow_forward
- Electronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons. Describe how electronegativity is illustrated on the periodic table including trends between groups and periods and significance of atom size.arrow_forwardDefine the term “transition.” How does this definition apply to the transition metals?arrow_forwardDescribe how the properties of the different types of elements (metals, nonmetals, metalloids) differ.arrow_forward
- Use a textbook or other valid source to research the physical and chemical properties of each element listed in Data Table 1 using the following as a guideline: Ductile (able to be deformed without losing toughness) and malleable (able to be hammered or pressed permanently out of shape without breaking or cracking) or not ductile or malleable Good, semi, or poor conductors of electricity and heat High or low melting and boiling points Occur or do not occur uncombined/freely in nature High, intermediate, or low reactivity Loses or gains electrons during reactions or is not reactivearrow_forwardProvide the Physical and Chemical Properties of Elements of the following elements listedarrow_forwardQuestions 4 and 5arrow_forward
- For a titration of 40.00 mL of 0.0500 M oxalic acid H2C2O4 with 0.1000 M KOH, calculate the pH at each of the following volume of KOH used in the titration: 1) before the titration begin;2) 15 mL; 3) 20 mL; 4) 25 mL; 5) 40 mL; 6) 50 mL. Ka1 = 5.90×10^-2, Ka2 = 6.50×10^-5 for oxalic acid.arrow_forwardPredict the major organic product(s), if any, of the following reactions. Assume all reagents are in excess unless otherwise indicated.arrow_forwardPredict the major organic product(s), if any, of the following reactions. Assume all reagents are in excess unless otherwise indicated.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





