The voltage produced by a single nerve or muscle cell is quite small, but there are many species of fish that use multiple action potentials in series to produce significant voltages. The electric organs in these fish are composed of specialized disk-shaped cells called electrocytes. The cell at rest has the usual potential difference between the inside and the outside, but the net potential difference across the cell is zero. An electrocyte is connected to nerve fibers that initially trigger a depolarization in one side of the cell but not the other. For the very short time of this depolarization, there is a net potential difference across the cell, as shown in Figure P23.86. Stacks of these cells connected in series can produce a large total voltage. Each stack can produce a small current; for more total current, more stacks are needed, connected in parallel. Figure P23.86 In an electric eel, each electrocyte can develop a voltage of 150 m V for a short time. For a total voltage of 450 V, how many electrocytes must be connected in series? A. 300 B. 450 C. 1500 D. 3 000
The voltage produced by a single nerve or muscle cell is quite small, but there are many species of fish that use multiple action potentials in series to produce significant voltages. The electric organs in these fish are composed of specialized disk-shaped cells called electrocytes. The cell at rest has the usual potential difference between the inside and the outside, but the net potential difference across the cell is zero. An electrocyte is connected to nerve fibers that initially trigger a depolarization in one side of the cell but not the other. For the very short time of this depolarization, there is a net potential difference across the cell, as shown in Figure P23.86. Stacks of these cells connected in series can produce a large total voltage. Each stack can produce a small current; for more total current, more stacks are needed, connected in parallel. Figure P23.86 In an electric eel, each electrocyte can develop a voltage of 150 m V for a short time. For a total voltage of 450 V, how many electrocytes must be connected in series? A. 300 B. 450 C. 1500 D. 3 000
The voltage produced by a single nerve or muscle cell is quite small, but there are many species of fish that use multiple action potentials in series to produce significant voltages. The electric organs in these fish are composed of specialized disk-shaped cells called electrocytes. The cell at rest has the usual potential difference between the inside and the outside, but the net potential difference across the cell is zero. An electrocyte is connected to nerve fibers that initially trigger a depolarization in one side of the cell but not the other. For the very short time of this depolarization, there is a net potential difference across the cell, as shown in Figure P23.86. Stacks of these cells connected in series can produce a large total voltage. Each stack can produce a small current; for more total current, more stacks are needed, connected in parallel.
Figure P23.86
In an electric eel, each electrocyte can develop a voltage of 150 m V for a short time. For a total voltage of 450 V, how many electrocytes must be connected in series?
Every cell in the body has organelles called mitochondria that can generate a voltage difference between their interior and exterior.
If the capacitance of a mitochondrion is 4.0×10−11F and the potential difference between the interior and exterior is 0.18 V, how much electrical energy does it store?
If a mitochondrion were to use all of its stored electrical energy to produce ATP molecules, and each ATP molecule requires 9.5×10−20J, how many molecules could it produce? (In reality, ATP molecules are produced by the flow of protons caused by the proton motive force, and not by the direct conversion of electrical energy stored by the capacitance of mitochondria.)
In Example 23.14 we estimated the capacitance of the cell membrane to be 89 pF, and in Example 23.15 we found that approximately 10,000 Na+ ions flow through an ion channel when it opens. Based on this information and what you learned about the action potential, estimate the total number of sodium channels in the membrane of a nerve cell.
The cell membranes of axons, which which are nerve cells in the human body, act as very small capacitors. A membrane is capable of storing 8.443e-9C of charge across a potential difference of 0.061V before discharging a nerve impulse. What is the capacitance of one of these axon membranes (in uF)?
Chapter 23 Solutions
College Physics: A Strategic Approach (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY