Intermittent windshield wipers use a variable resistor in an RC circuit to set the delay between successive passes of the wipers. A typical circuit is shown in Figure P23.78. When the switch closes, the capacitor (initially uncharged) begins to charge and the potential at point b begins to increase. A sensor measures the potential difference between points a and b, triggering a pass of the wipers when V b = V a . (Another part of the circuit, not shown, discharges the capacitor at this time so that the cycle can start again.) a. What value of the variable resistor will give 12 seconds from the start of a cycle to a pass of the wipers? b. To decrease the time, should the variable resistance be increased or decreased? Figure P23.78
Intermittent windshield wipers use a variable resistor in an RC circuit to set the delay between successive passes of the wipers. A typical circuit is shown in Figure P23.78. When the switch closes, the capacitor (initially uncharged) begins to charge and the potential at point b begins to increase. A sensor measures the potential difference between points a and b, triggering a pass of the wipers when V b = V a . (Another part of the circuit, not shown, discharges the capacitor at this time so that the cycle can start again.) a. What value of the variable resistor will give 12 seconds from the start of a cycle to a pass of the wipers? b. To decrease the time, should the variable resistance be increased or decreased? Figure P23.78
Intermittent windshield wipers use a variable resistor in an RC circuit to set the delay between successive passes of the wipers. A typical circuit is shown in Figure P23.78. When the switch closes, the capacitor (initially uncharged) begins to charge and the potential at point b begins to increase. A sensor measures the potential difference between points a and b, triggering a pass of the wipers when Vb = Va. (Another part of the circuit, not shown, discharges the capacitor at this time so that the cycle can start again.)
a. What value of the variable resistor will give 12 seconds from the start of a cycle to a pass of the wipers?
b. To decrease the time, should the variable resistance be increased or decreased?
3.63 • Leaping the River II. A physics professor did daredevil
stunts in his spare time. His last stunt was an attempt to jump across
a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at
53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower
than the top of the ramp. The river itself was 100 m below the ramp.
Ignore air resistance. (a) What should his speed have been at the top of
the ramp to have just made it to the edge of the far bank? (b) If his speed
was only half the value found in part (a), where did he land?
Figure P3.63
53.0°
100 m
40.0 m→
15.0 m
Please solve and answer the question correctly please. Thank you!!
You throw a small rock straight up from the edge of a highway bridge that crosses a river. The rock passes you on its way down, 5.00 s after it was thrown. What is the speed of the rock just before it reaches the water 25.0 m below the point where the rock left your hand? Ignore air resistance.
Chapter 23 Solutions
College Physics: A Strategic Approach (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY