The Defibrillator A defibrillator is designed to pass a large current through a patient’s torso in order to stop dangerous heart rhythms. Its key part is a capacitor that is charged to a high voltage. The patient’s torso plays the role of a resistor in an RC circuit. When a switch is closed, the capacitor discharges through the patient’s torso. A jolt from a defibrillator is intended to be intense and rapid; the maximum current is very large, so the capacitor discharges quickly. This rapid pulse depolarizes the heart, stopping all electrical activity. This allows the heart’s internal nerve circuitry to reestablish a healthy rhythm. A typical defibrillator has a 32 μ F capacitor charged to 5000 V. The electrodes connected to the patient are coated with a conducting gel that reduces the resistance of the skin to where the effective resistance of the patient’s torso is 100 Ω. Which pair of graphs in Figure P23.82 best represents the capacitor voltage and the current through the torso as a function of time after the switch is closed?
The Defibrillator A defibrillator is designed to pass a large current through a patient’s torso in order to stop dangerous heart rhythms. Its key part is a capacitor that is charged to a high voltage. The patient’s torso plays the role of a resistor in an RC circuit. When a switch is closed, the capacitor discharges through the patient’s torso. A jolt from a defibrillator is intended to be intense and rapid; the maximum current is very large, so the capacitor discharges quickly. This rapid pulse depolarizes the heart, stopping all electrical activity. This allows the heart’s internal nerve circuitry to reestablish a healthy rhythm. A typical defibrillator has a 32 μ F capacitor charged to 5000 V. The electrodes connected to the patient are coated with a conducting gel that reduces the resistance of the skin to where the effective resistance of the patient’s torso is 100 Ω. Which pair of graphs in Figure P23.82 best represents the capacitor voltage and the current through the torso as a function of time after the switch is closed?
A defibrillator is designed to pass a large current through a patient’s torso in order to stop dangerous heart rhythms. Its key part is a capacitor that is charged to a high voltage. The patient’s torso plays the role of a resistor in an RC circuit. When a switch is closed, the capacitor discharges through the patient’s torso. A jolt from a defibrillator is intended to be intense and rapid; the maximum current is very large, so the capacitor discharges quickly. This rapid pulse depolarizes the heart, stopping all electrical activity. This allows the heart’s internal nerve circuitry to reestablish a healthy rhythm.
A typical defibrillator has a 32 μF capacitor charged to 5000 V. The electrodes connected to the patient are coated with a conducting gel that reduces the resistance of the skin to where the effective resistance of the patient’s torso is 100 Ω.
Which pair of graphs in Figure P23.82 best represents the capacitor voltage and the current through the torso as a function of time after the switch is closed?
Two objects (m₁ = 4.75 kg and m₂
2.80 kg) are connected by a light string passing over a light, frictionless pulley as in the figure below. The 4.75-kg object is released from rest at a point h = 4.00 m above the table
mg
m
(a) Determine the speed of each object when the two pass each other.
m/s
(b) Determine the speed of each object at the moment the 4.75-kg object hits the table.
m/s
(c) How much higher does the 2.80-kg object travel after the 4.75-kg object hits the table?
m
A cell of negligible internal resistance is connected to three identical resistors. The
current in the cell is 3.0 A.
The resistors are now arranged in series.
What is the new current in the cell?
A negatively charged sphere is falling through a magnetic field.
north pole
of magnet
direction of motion
south pole
of magnet
What is the direction of the magnetic force acting on the sphere?
Chapter 23 Solutions
College Physics: A Strategic Approach (3rd Edition)
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
How To Solve Any Resistors In Series and Parallel Combination Circuit Problems in Physics; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=eFlJy0cPbsY;License: Standard YouTube License, CC-BY