Batteries are recharged by connecting them to a power supply (i.e., another battery) of greater emf in such a way that the current flows into the positive terminal of the battery being recharged, as was shown in Example 23.1. This reverse current through the battery replenishes its chemicals. The current is kept fairly low so as not to overheat the battery being recharged by dissipating energy in its internal resistance. a. Suppose the real battery of Figure P23.55 is rechargeable. What emf power supply should be used for a 0.75 A recharging current? b. If this power supply charges the battery for 10 minutes, how much energy goes into the battery? How much is dissipated as thermal energy in the internal resistance?
Batteries are recharged by connecting them to a power supply (i.e., another battery) of greater emf in such a way that the current flows into the positive terminal of the battery being recharged, as was shown in Example 23.1. This reverse current through the battery replenishes its chemicals. The current is kept fairly low so as not to overheat the battery being recharged by dissipating energy in its internal resistance. a. Suppose the real battery of Figure P23.55 is rechargeable. What emf power supply should be used for a 0.75 A recharging current? b. If this power supply charges the battery for 10 minutes, how much energy goes into the battery? How much is dissipated as thermal energy in the internal resistance?
Batteries are recharged by connecting them to a power supply (i.e., another battery) of greater emf in such a way that the current flows into the positive terminal of the battery being recharged, as was shown in Example 23.1. This reverse current through the battery replenishes its chemicals. The current is kept fairly low so as not to overheat the battery being recharged by dissipating energy in its internal resistance.
a. Suppose the real battery of Figure P23.55 is rechargeable. What emf power supply should be used for a 0.75 A recharging current?
b. If this power supply charges the battery for 10 minutes, how much energy goes into the battery? How much is dissipated as thermal energy in the internal resistance?
Consider the situation in the figure below; a neutral conducting ball hangs from the ceiling by an insulating string, and a charged insulating rod is going to be placed nearby.
A. First, if the rod was not there, what statement best describes the charge distribution of the ball?
1) Since it is a conductor, all the charges are on the outside of the ball. 2) The ball is neutral, so it has no positive or negative charges anywhere. 3) The positive and negative charges are separated from each other, but we don't know what direction the ball is polarized. 4) The positive and negative charges are evenly distributed everywhere in the ball.
B. Now, when the rod is moved close to the ball, what happens to the charges on the ball?
1) There is a separation of charges in the ball; the side closer to the rod becomes positively charged, and the opposite side becomes negatively charged. 2) Negative charge is drawn from the ground (via the string), so the ball acquires a net negative charge. 3)…
answer question 5-9
AMPS
VOLTS
OHMS
5) 50 A
110 V
6) .08 A
39 V
7) 0.5 A
60
8) 2.5 A
110 V
Chapter 23 Solutions
College Physics: A Strategic Approach (3rd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
How To Solve Any Resistors In Series and Parallel Combination Circuit Problems in Physics; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=eFlJy0cPbsY;License: Standard YouTube License, CC-BY