(a)
Interpretation The electronic configuration of
Concept introduction:
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions
Ligand field theory: It is used to explain the bonding between metal and ligand in a coordination complex. Ligand field theory is explained in terms of electrostatic interaction of between metal ion and ligands.
If the complex has minimum one unpaired electron, then they are paramagnetic and are attracted towards the magnetic field. If all the electrons are paired in a complex, then they are diamagnetic and are repelled from the magnetic field.
Electronic configuration shows the electrons distribution of atoms or molecule in its molecular or atomic orbitals. The electrons are distributed in orbitals by following three important rules, Aufbau's Principle, Pauli-exclusion principle, and Hund's Rule.
The number of moles of any substance can be determined using the equation
Empirical formula: The simplest integer ratio of the element in a chemical formula. It can be obtained by reducing the ratio of elements to the simplest integer form of a molecular formula.
(b)
Interpretation The electronic configuration of
Concept introduction:
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions
Ligand field theory: It is used to explain the bonding between metal and ligand in a coordination complex. Ligand field theory is explained in terms of electrostatic interaction of between metal ion and ligands.
If the complex has minimum one unpaired electron, then they are paramagnetic and are attracted towards the magnetic field. If all the electrons are paired in a complex, then they are diamagnetic and are repelled from the magnetic field.
Electronic configuration shows the electrons distribution of atoms or molecule in its molecular or atomic orbitals. The electrons are distributed in orbitals by following three important rules, Aufbau's Principle, Pauli-exclusion principle, and Hund's Rule.
The number of moles of any substance can be determined using the equation
Empirical formula: The simplest integer ratio of the element in a chemical formula. It can be obtained by reducing the ratio of elements to the simplest integer form of a molecular formula.
(c)
Interpretation The electronic configuration of
Concept introduction:
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions
Ligand field theory: It is used to explain the bonding between metal and ligand in a coordination complex. Ligand field theory is explained in terms of electrostatic interaction of between metal ion and ligands.
If the complex has minimum one unpaired electron, then they are paramagnetic and are attracted towards the magnetic field. If all the electrons are paired in a complex, then they are diamagnetic and are repelled from the magnetic field.
Electronic configuration shows the electrons distribution of atoms or molecule in its molecular or atomic orbitals. The electrons are distributed in orbitals by following three important rules, Aufbau's Principle, Pauli-exclusion principle, and Hund's Rule.
The number of moles of any substance can be determined using the equation
Empirical formula: The simplest integer ratio of the element in a chemical formula. It can be obtained by reducing the ratio of elements to the simplest integer form of a molecular formula.
Trending nowThis is a popular solution!
Chapter 22 Solutions
Chemistry & Chemical Reactivity
- Identify, based on the position in the periodic table, the actinide elements among those in the following list: Co, Cm, Cd, Ce, Cf.arrow_forwardThe ferrate ion, FeO42, is such a powerful oxidizing agent that in acidic solution, aqueous ammonia is reduced to elemental nitrogen along with the formation of the iron(III) ion. a. What is the oxidation state of iron in FeO42, and what is the electron configuration of iron in this polyatornic ion? b. lf 25.0 mL of a 0.243 M FeO42 solution is allowed to react with 55.0 mL of 1.45 M aqueous ammonia, what volume of nitrogen gas can form at 25C and 1.50 atm?arrow_forwardGive the electron configuration of (a) La; (b) Ce³⁺; (c) Es;(d) U⁴⁺arrow_forward
- Give the oxidation state of the metal for each of the following oxides of the first transition series. (Hint: Oxides of formula M3O4 are examples of mixed valence compounds in which the metal ion is present in more than oneoxidation state. It is possible to write these compound formulas in the equivalent format MO∙M2O3, to permit estimation of the metal’s two oxidation states.)(a) Sc2O3(b) TiO2(c) V2O5(d) CrO3(e) MnO2(f) Fe3O4(g) Co3O4(h) NiO(i) Cu2Oarrow_forwardPhosphorus (P) is present in a germanium (Ge) sample. Assume that one of its five valence electrons revolves in a Bohr orbit around each P+ ion in the Ge lattice. (a) If the effective mass of the electron is 0.17 me and the dielectric constant of Ge is 16, find the radius of the first Bohr orbit of the electron. (b) Ge has a band gap (Eg) of 0.65 eV. How does the ionization energy of the above electron comparing to Eg and kBT at room temperature?arrow_forwardThe most important oxides of iron magnetite, Fe3O4, and hematite, Fe2O3. What are the oxidation state of iron in these compounds? One of these iron oxides is ferromagnetic, and the other is antiferromagnetic. Which iron oxide is likely to show which type of magnetism? Explain .arrow_forward
- Assign reasons for each of the following :(i) Transition metals generally form coloured compounds.(ii) Manganese exhibits the highest oxidation state of +7 among the 3d series of transition elements.arrow_forwardPredict the products of each of the following reactions and then balance the chemical equations.(a) Fe is heated in an atmosphere of steam.(b) NaOH is added to a solution of Fe(NO3)3.(c) FeSO4 is added to an acidic solution of KMnO4.(d) Fe is added to a dilute solution of H2SO4.(e) A solution of Fe(NO3)2 and HNO3 is allowed to stand in air.(f) FeCO3 is added to a solution of HClO4.(g) Fe is heated in air.arrow_forwardHow many electrons are in the valence d orbitals in these transition-metal ions? (a) Co3+arrow_forward
- How do the transition metals in Period 4 affect the pattern ofionization energies in Group 3A(13)? How does this patterncompare with that in Group 3B(3)?arrow_forwardUsing the periodic table to locate each element, write the electron configuration of (a) V; (b) Y; (c) Hg.arrow_forwardAlthough thermodynamically feasible, in practice, magnesium metal is not used for reduction of Alumina in the metallurgy of aluminium. Why?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning