
Concept explainers
Give the name or formula for each ion or compound, as appropriate.
(a) pentaaquahydroxoiron(III) ion
(b) K2[Ni(CN)4]
(c) K[Cr(C2O4)2(H2O)2]
(d) ammonium tetrachloroplatinate(II)
(a)

Interpretation: The formula of the given ions or compounds has to be determined.
Concept introduction:
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.
Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.
Monodentate ligand is ligands which donate only one pair of electrons to form bond with metal. It only makes one bond with metal. Polydentate ligand forms two or more coordination bond with metal ions to form a complex.
Oxidation number: The total number of electrons in an atom after losing or gaining electrons to make a bond with another atom. It indicates the charge of an ion.
The rule to name a coordination complex is,
- 1. The cation is named before the anion.
- 2. Within a complex ion, the Ligands are arranged in an alphabetical order followed by the metal ion name. The anionic Ligand should ends with a letter –o, the neutral Ligand are called by the molecules (some common name for some exception).
- 3. When more Ligands are present, Greek prefixes like di, tri, tetra, penta, and hexa to specify their number.
- 4. The oxidation number of the metal is represented in roman numerals immediately following the metal ion name.
- 5. If the complex ion is an anion, the metal name should end with –ate.
Spectrochemical series: The list of ligands arranged in an ascending order of
Answer to Problem 17PS
The formula is
Explanation of Solution
The oxidation state of central metal atom
The ligands can be written as,
The oxidation state is,
The charge of the complex is,
Therefore,
According to spectrochemical series,
The formula of the complex is,
The rule to name a coordination complex is,
- 1. The cation is named before the anion.
- 2. Within a complex ion, the Ligands are arranged in an alphabetical order followed by the metal ion name. The anionic Ligand should ends with a letter –o, the neutral Ligand are called by the molecules (some common name for some exception).
- 3. When more Ligands are present, Greek prefixes like di, tri, tetra, penta, and hexa to specify their number.
- 4. The oxidation number of the metal is represented in roman numerals immediately following the metal ion name.
- 5. If the complex ion is an anion, the metal name should end with –ate.
(b)

Interpretation: The name or formula of the given ions or compounds has to be determined.
Concept introduction:
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.
Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.
Monodentate ligand is ligands which donate only one pair of electrons to form bond with metal. It only makes one bond with metal. Polydentate ligand forms two or more coordination bond with metal ions to form a complex.
Oxidation number: The total number of electrons in an atom after losing or gaining electrons to make a bond with another atom. It indicates the charge of an ion.
The rule to name a coordination complex is,
- 1. The cation is named before the anion.
- 2. Within a complex ion, the Ligands are arranged in an alphabetical order followed by the metal ion name. The anionic Ligand should ends with a letter –o, the neutral Ligand are called by the molecules (some common name for some exception).
- 3. When more Ligands are present, Greek prefixes like di, tri, tetra, penta, and hexa to specify their number.
- 4. The oxidation number of the metal is represented in roman numerals immediately following the metal ion name.
- 5. If the complex ion is an anion, the metal name should end with –ate.
Spectrochemical series: The list of ligands arranged in an ascending order of
Answer to Problem 17PS
The name is
Explanation of Solution
The ligands are arranged in an alphabetical order, followed by the metal name (nickel). There are two
The ligands can be written as,
The oxidation state of central metal atom
Therefore,
The name of the ion is,
(c)

Interpretation: The name of the given ions or compounds has to be determined.
Concept introduction:
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.
Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.
Monodentate ligand is ligands which donate only one pair of electrons to form bond with metal. It only makes one bond with metal. Polydentate ligand forms two or more coordination bond with metal ions to form a complex.
Oxidation number: The total number of electrons in an atom after losing or gaining electrons to make a bond with another atom. It indicates the charge of an ion.
The rule to name a coordination complex is,
- 1. The cation is named before the anion.
- 2. Within a complex ion, the Ligands are arranged in an alphabetical order followed by the metal ion name. The anionic Ligand should ends with a letter –o, the neutral Ligand are called by the molecules (some common name for some exception).
- 3. When more Ligands are present, Greek prefixes like di, tri, tetra, penta, and hexa to specify their number.
- 4. The oxidation number of the metal is represented in roman numerals immediately following the metal ion name.
- 5. If the complex ion is an anion, the metal name should end with –ate.
Spectrochemical series: The list of ligands arranged in an ascending order of
Answer to Problem 17PS
The name is
Explanation of Solution
The ligands are arranged in an alphabetical order, followed by the metal name (chromium). There are two
The ligands can be written as,
The oxidation state of central metal atom
Therefore,
The name of the ion is,
(d)

Interpretation: The formula of the given ions or compounds has to be determined.
Concept introduction:
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.
Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.
Monodentate ligand is ligands which donate only one pair of electrons to form bond with metal. It only makes one bond with metal. Polydentate ligand forms two or more coordination bond with metal ions to form a complex.
Oxidation number: The total number of electrons in an atom after losing or gaining electrons to make a bond with another atom. It indicates the charge of an ion.
The rule to name a coordination complex is,
- 1. The cation is named before the anion.
- 2. Within a complex ion, the Ligands are arranged in an alphabetical order followed by the metal ion name. The anionic Ligand should ends with a letter –o, the neutral Ligand are called by the molecules (some common name for some exception).
- 3. When more Ligands are present, Greek prefixes like di, tri, tetra, penta, and hexa to specify their number.
- 4. The oxidation number of the metal is represented in roman numerals immediately following the metal ion name.
- 5. If the complex ion is an anion, the metal name should end with –ate.
Spectrochemical series: The list of ligands arranged in an ascending order of
Answer to Problem 17PS
The formula is
Explanation of Solution
The oxidation state of central metal atom
The ligands can be written as,
The oxidation state is,
The complex is neutral
Therefore,
According to spectrochemical series,
The formula of the complex is,
Want to see more full solutions like this?
Chapter 22 Solutions
Chemistry & Chemical Reactivity
- > each pair of substrates below, choose the one that will react faster in a substitution reaction, assuming that: 1. the rate of substitution doesn't depend on nucleophile concentration and 2. the products are a roughly 50/50 mixture of enantiomers. Substrate A Substrate B Faster Rate X Ś CI (Choose one) (Choose one) CI Br Explanation Check Br (Choose one) © 2025 McGraw Hill LLC. All Rights Farrow_forwardNMR spectrum of ethyl acetate has signals whose chemical shifts are indicated below. Which hydrogen or set of hydrogens corresponds to the signal at 4.1 ppm? Select the single best answer. The H O HỌC—C—0—CH, CH, 2 A ethyl acetate H NMR: 1.3 ppm, 2.0 ppm, 4.1 ppm Check OA B OC ch B C Save For Later Submit Ass © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center |arrow_forwardHow many signals do you expect in the H NMR spectrum for this molecule? Br Br Write the answer below. Also, in each of the drawing areas below is a copy of the molecule, with Hs shown. In each copy, one of the H atoms is colored red. Highlight in red all other H atoms that would contribute to the same signal as the H already highlighted red Note for advanced students: In this question, any multiplet is counted as one signal. 1 Number of signals in the 'H NMR spectrum. For the molecule in the top drawing area, highlight in red any other H atoms that will contribute to the same signal as the H atom already highlighted red. If no other H atoms will contribute, check the box at right. Check For the molecule in the bottom drawing area, highlight in red any other H atoms that will contribute to the same signal as the H atom already highlighted red. If no other H atoms will contribute, check the box at right. O ✓ No additional Hs to color in top molecule ง No additional Hs to color in bottom…arrow_forward
- in the kinetics experiment, what were the values calculated? Select all that apply.a) equilibrium constantb) pHc) order of reactiond) rate contstantarrow_forwardtrue or false, given that a 20.00 mL sample of NaOH took 24.15 mL of 0.141 M HCI to reach the endpoint in a titration, the concentration of the NaOH is 1.17 M.arrow_forwardin the bromothymol blue experiment, pKa was measured. A closely related compound has a Ka of 2.10 x 10-5. What is the pKa?a) 7.1b) 4.7c) 2.0arrow_forward
- calculate the equilibrium concentration of H2 given that K= 0.017 at a constant temperature for this reaction. The inital concentration of HBr is 0.050 M.2HBr(g) ↔ H2(g) + Br2(g)a) 4.48 x 10-2 M b) 5.17 x 10-3 Mc) 1.03 x 10-2 Md) 1.70 x 10-2 Marrow_forwardtrue or falsegiven these two equilibria with their equilibrium constants:H2(g) + CI2(l) ↔ 2HCI(g) K= 0.006 CI2(l) ↔ CI2(g) K= 0.30The equilibrium contstant for the following reaction is 1.8H2(g) + CI2 ↔ 2HCI(g)arrow_forwardI2(g) + CI2(g) ↔ 2ICIK for this reaction is 81.9. Find the equilibrium concentration of I2 if the inital concentration of I2 and CI2 are 0.010 Marrow_forward
- true or false,the equilibrium constant for this reaction is 0.50.PCI5(g) ↔ PCI3(g) + CI2(g)Based on the above, the equilibrium constant for the following reaction is 0.25.2PCI5(g) ↔. 2PCI3(g) + 2CI2(g)arrow_forwardtrue or false, using the following equilibrium, if carbon dioxide is added the equilibrium will shift toward the productsC(s) + CO2(g) ↔ 2CO(g)arrow_forward2S2O2/3- (aq) + I2 (aq) ---> S4O2/6- (aq) +2I- (aq) Experiment I2 (M) S2O3- (M) Initital Rate (M/s) 1 0.01 0.01 0.0004 2 0.01 0.02 0.0004 3 0.02 0.01 0.0008 Calculate the overall order for this reaction using the table data a) 3b) 0c) 2d) 1arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning





