Concept explainers
It was shown in Example 21.10 (Section 21.5) that the electric field due to an infinite line of charge is perpendicular to the line and has magnitude E = λ/2π∈0r. Consider an imaginary cylinder with radius r = 0.250 m and length l = 0.400 m that has an infinite line of positive charge running along its axis. The charge per unit length on the line is λ = 3.00 μC/m. (a) What is the electric flux through the cylinder due to this infinite line of charge? (b) What is the flux through the cylinder if its radius is increased to r = 0.500 m? (c) What is the flux through the cylinder if its length is increased to l = 0.800 m?
Want to see the full answer?
Check out a sample textbook solutionChapter 22 Solutions
University Physics (14th Edition)
Additional Science Textbook Solutions
Physics for Scientists and Engineers with Modern Physics
University Physics Volume 2
University Physics Volume 1
College Physics
Conceptual Physics (12th Edition)
Conceptual Physical Science (6th Edition)
- Find an expression for the magnitude of the electric field at point A mid-way between the two rings of radius R shown in Figure P24.30. The ring on the left has a uniform charge q1 and the ring on the right has a uniform charge q2. The rings are separated by distance d. Assume the positive x axis points to the right, through the center of the rings. FIGURE P24.30 Problems 30 and 31.arrow_forwardWhy is the following situation impossible? A solid copper sphere of radius 15.0 cm is in electrostatic equilibrium and carries a charge of 40.0 nC. Figure P24.30 shows the magnitude of the electric field as a function of radial position r measured from the center of the sphere. Figure P24.30arrow_forwardThe electric field 10.0 cm from the surface of a copper ball of radius 5.0 cm is directed toward the ball's center and has magnitude 4.0102 N/C. How much charge is on the surface of the ball?arrow_forward
- A solid, insulating sphere of radius a has a uniform charge density throughout its volume and a total charge Q. Concentric with this sphere is an uncharged, conducting, hollow sphere whose inner and outer radii are b and c as shown in Figure P19.75. We wish to understand completely the charges and electric fields at all locations. (a) Find the charge contained within a sphere of radius r a. (b) From this value, find the magnitude of the electric field for r a. (c) What charge is contained within a sphere of radius r when a r b? (d) From this value, find the magnitude of the electric field for r when a r b. (e) Now consider r when b r c. What is the magnitude of the electric field for this range of values of r? (f) From this value, what must be the charge on the inner surface of the hollow sphere? (g) From part (f), what must be the charge on the outer surface of the hollow sphere? (h) Consider the three spherical surfaces of radii a, b, and c. Which of these surfaces has the largest magnitude of surface charge density?arrow_forwardConsider the charge distribution shown in Figure P19.74. (a) Show that the magnitude of the electric field at the center of any face of the cube has a value of 2.18 keq/s2. (b) What is the direction of the electric field at the center of the top face of the cube?arrow_forwardA circular ring of charge with radius b has total charge q uniformly distributed around it. What is the magnitude of the electric field at the center of the ring? (a) 0 (b) keq/b2 (c) keq2/b2 (d) keq2/b (e) none of those answersarrow_forward
- Two long, thin rods each have linear charge density = 6.0 C/m and lie parallel to each other, separated by 20.0 cm as shown in Figure P25.32. Determine the magnitude and direction of the net electric field at point P, a distance of 15.0 cm directly above the right rod. Figure P25.32arrow_forwardThe electric field at a point on the perpendicular bisector of a charged rod was calculated as the first example of a continuous charge distribution, resulting in Equation 24.15:E=kQy12+y2j a. Find an expression for the electric field when the rod is infinitely long. b. An infinitely long rod with uniform linear charge density also contains an infinite amount of charge. Explain why this still produces an electric field near the rod that is finite.arrow_forwardA solid conducting sphere of radius 2.00 cm has a charge 8.00 μC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a total charge −4.00 μC. Find the electric field at (a) r = 1.00 cm, (b) r = 3.00 cm, (c) r = 4.50 cm, and (d) r = 7.00 cm from the center of this charge configuration.arrow_forward
- aA plastic rod of length = 24.0 cm is uniformly charged with a total charge of +12.0 C. The rod is formed into a semicircle with its center at the origin of the xy plane (Fig. P24.34). What are the magnitude and direction of the electric field at the origin? Figure P24.34arrow_forwardTwo solid spheres, both of radius 5 cm, carry identical total charges of 2 C. Sphere A is a good conductor. Sphere B is an insulator, and its charge is distributed uniformly throughout its volume. (i) How do the magnitudes of the electric fields they separately create at a radial distance of 6 cm compare? (a) EA EB = 0 (b) EA EB 0 (c) EA = EB 0 (d) 0 EA EB (e) 0 = EA EB (ii) How do the magnitudes of the electric fields they separately create at radius 4 cm compare? Choose from the same possibilities as in part (i).arrow_forwardA line of charge of length L=12m with charge density λ=48.0μC/m lies along the positive Y-axis whose one end is at the origin O. A point charge q=49.0μC lies on the X-axis at (44,0,0) and point P lies on the Z-axis at 13m from the origin. Here the coordinates are given in meters. Find the electric field at P due to the line of charge only. (Hint: You may have to do an integration.) i) x component of electric field ii) y component of electric field iii) z component of electric fieldarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning