Concept explainers
CALC A nonuniform, but spherically symmetric, distribution of charge has a charge density ρ(r) given as follows:
where ρ0 is a positive constant. (a) Find the total charge contained in the charge distribution. Obtain an expression for the electric field in the region (b) r ≥ R; (c) r ≤ R. (d) Graph the electric-field magnitude E as a function of r. (e) Find the value of r at which the electric field is maximum, and find the value of that maximum field.
Want to see the full answer?
Check out a sample textbook solutionChapter 22 Solutions
University Physics (14th Edition)
Additional Science Textbook Solutions
Cosmic Perspective Fundamentals
Life in the Universe (4th Edition)
College Physics: A Strategic Approach (3rd Edition)
Conceptual Physics (12th Edition)
University Physics Volume 2
Sears And Zemansky's University Physics With Modern Physics
- Suppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rh has charge -Q. The electric field E at a radial distancer from the central axis is given by the function: E = ae-r/ao + B/r + bo where alpha (a), beta (B), ao and bo are constants. Find an expression for its capacitance. First, let us derive the potential difference Vab between the two conductors. The potential difference is related to the electric field by: Vab = Edr = - Edr Calculating the antiderivative or indefinite integral, Vab = (-aaoe-r/ao + B + bo By definition, the capacitance C is related to the charge and potential difference by: C= Q I Vabarrow_forwardA cylinder of length L=5m has a radius R=2 cm and linear charge density 2=300 µC/m. Although the linear charge density is a constant through the cylinder, the charge density within the cylinder changes with r. Within the cylinder, the charge density of the cylinder varies with radius as a function p( r) =p.r/R. Here R is the radius of the cylinder and R=2 cm and p, is just a constant that you need to determine. b. Find the constant po in terms of R and 2. Then plug in values of R and 1. to find the value for the constant p. c. Assuming that L>>R, use Gauss's law to find out the electric field E inside the cylinder (rR) in terms of 1. and R. d. Based on your result from problem c, find the electric field E at r=1cm and r=4cm.arrow_forwardA charged nonconducting rod has a length L of 2.0 m and a cross-sectional area A of 8.0 cm?; it is placed along the positive side of an x axis with one end at the origin. The volume charge density p is the charge per unit volume, with the units of coulomb per cubic meter. a) How many excess electrons are on the rod if the rod's volume charge density pu is uniform with a value of –10 µC/m³? How does that compare to the total number of electrons you would estimate would be in the rod? (By compare, just a ballpark estimate- to within several orders of magnitude, factors of ten). b) What is an expression for the number of excess electrons on the rod if the rod's volume charge is nonuniform and is given instead by pN=ax³ where a is a constant? c) What value of a is necessary for the rod in part b to have the same number of excess electrons as the rod in part a)?arrow_forward
- An infinitely long cylindrical conducting shell of outer radius r1 = 0.10 m and inner radius r2 = 0.08 m initially carries a surface charge density σ = -0.15 μC/m2. A thin wire, with linear charge density λ = 1.1 μC/m, is inserted along the shells' axis. The shell and the wire do not touch and there is no charge exchanged between them. A) What is the new surface charge density, in microcoulombs per square meter, on the inner surface of the cylindrical shell? B) What is the new surface charge density, in microcoulombs per square meter, on the outer surface of the cylindrical shell? C) Enter an expression for the magnitude of the electric field outside the cylinder (r > 0.1 m), in terms of λ, σ, r1, r, and ε0.arrow_forwardSuppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rh has charge -Q. The electric field E at a radial distance r from the central axis is given by the function: E = ae-r/ao + B/r + bo where alpha (a), beta (B), ao and bo are constants. Find an expression for its capacitance. First, let us derive the potential difference Vab between the two conductors. The potential difference is related to the electric field by: Vab = Edr = - Edr Calculating the antiderivative or indefinite integral, Vab = (-aager/ao + B + bo By definition, the capacitance Cis related to the charge and potential difference by: C = Evaluating with the upper and lower limits of integration for Vab, then simplifying: C = Q/( (e rb/ao - eTalao) + B In( ) + bo ( ))arrow_forwardDon't use chat gpt It plzarrow_forward
- A non-uniform, but spherically symmetric, distribution of charge has a charge density ρ(r) given as follows: ρ(r)=ρ0(1−4r/3R) for r≤R ρ(r)=0 for r≥R ρ0 is a positive constant Obtain an expression for the electric field in the region r ≤ Rarrow_forwardSir, please solve this problem asap. thank youarrow_forwardAn isolated conductor has a net charge of +12.0 x 10 6 C and a cavity with a particle of chargeq = +3.50 x 10-6 C. What is the charge (a) on the cavity wall and (b) on the outer surface? (a) Number Units (b) Number Unitsarrow_forward
- can you please ans (a) & (b)?arrow_forwardAn infinitely long cylinder in free space is concentric with the z-axis and has radius a. The net charge density p in this cylinder is given in cylindrical coordinates by, 1 a² +r² where A is a constant. (a) Show that the total charge per unit length, λ in the cylinder is λ = πA ln 2. p(r) = A- Hint: you may find the following integral useful. 1 2 J for r a) and inside the cylinder (r< a). (d) The cylinder is composed of a material in which the polarisation P is given by P = P₁² in (1 +5²) e₁₁ er, r where Po is a constant. Determine the bound charge density pb in the cylinder. Hence, or otherwise, determine a relation between A and Po such that the free charge density of in the cylinder vanishes.arrow_forwardIn free space, a linear charge density > is on the z axis. Get the electric force over a unit charge "q" located at P (1, 2, 3) m if the linear charge density is in -4 m < z < 4m = 2μC m Give the answer in unit vectors terms.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning