University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 22.22E
A point charge of −3.00 μC is located in the center of a spherical cavity of radius 6.50 cm that, in turn, is at the center of an insulating charged solid sphere. The charge density in the solid is ρ = 7.35 × 10−4 C/m3. Calculate the electric field inside the solid at a distance of 9.50 cm from the center of the cavity.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Charge Q is distributed uniformly throughout the volume of an insulating sphere of radius R = 4.00 cm. At a distance of r = 8.00 cm from the center of the sphere, the electric field due to the charge distribution has magnitude E = 940 N/C. What are (a) the volume charge density for the sphere and (b) the electric field at a distance of 2.00 cm from the sphere’s center?
A circular metal plate of radius 17.2 cm carries a total charge of 1.01
μC and the charge is distributed uniformly over the surface of the
plate. Determine the surface charge density on the plate and report
your answer in µC/m².
A thin, square, conducting plate 47.0 cm on a side lies in the xy plane. A total charge of 3.50 10-8 C is placed on the plate. You may assume the charge density is uniform.
(a) Find the charge density on each face of the plate. C/m2(b) Find the electric field just above the plate.
magnitude
N/C
direction
(c) Find the electric field just below the plate.
magnitude
N/C
direction
Chapter 22 Solutions
University Physics (14th Edition)
Ch. 22 - A rubber balloon has a single point charge in its...Ch. 22 - Suppose that in Fig. 22.15 both charges were...Ch. 22 - In Fig. 22.15, suppose a third point charge were...Ch. 22 - A certain region of space bounded by an imaginary...Ch. 22 - A spherical Gaussian surface encloses a point...Ch. 22 - You find a sealed box on your doorstep. You...Ch. 22 - A solid copper sphere has a net positive charge....Ch. 22 - A spherical Gaussian surface encloses a point...Ch. 22 - In a conductor, one or more electrons from each...Ch. 22 - You charge up the Van de Graaff generator shown in...
Ch. 22 - Lightning is a flow of electrons. The lightning...Ch. 22 - A solid conductor has a cavity in its interior....Ch. 22 - Explain this statement: In a static situation, the...Ch. 22 - In a certain region of space, the electric field E...Ch. 22 - (a) In a certain region of space, the volume...Ch. 22 - A negative charge Q is placed inside the cavity of...Ch. 22 - A flat sheet of paper of area 0.250 m2 is oriented...Ch. 22 - A flat sheet is in the shape of a rectangle with...Ch. 22 - You measure an electric field of 1.25 106 N/C at...Ch. 22 - It was shown in Example 21.10 (Section 21.5) that...Ch. 22 - A hemispherical surface with radius r in a region...Ch. 22 - The cube in Fig. E22.6 has sides of length L =...Ch. 22 - BIO As discussed in Section 22.5, human nerve...Ch. 22 - The three small spheres shown in Fig. E22.8 carry...Ch. 22 - A charged paint is spread in a very thin uniform...Ch. 22 - A point charge q1 = 4.00 nC is located on the...Ch. 22 - C point charge is at the center of a cube with...Ch. 22 - Electric Fields in an Atom. The nuclei of large...Ch. 22 - Two very long uniform lines of charge are parallel...Ch. 22 - A solid metal sphere with radius 0.450 m carries a...Ch. 22 - How many excess electrons must be added to an...Ch. 22 - Some planetary scientists have suggested that the...Ch. 22 - A very long uniform line of charge has charge per...Ch. 22 - The electric field 0.400 m from a very long...Ch. 22 - A hollow, conducting sphere with an outer radius...Ch. 22 - (a) At a distance of 0.200 cm from the center or a...Ch. 22 - The electric field at a distance of 0.145 m from...Ch. 22 - A point charge of 3.00 C is located in the center...Ch. 22 - CP An electron is released from rest at a distance...Ch. 22 - Charge Q is distributed uniformly throughout the...Ch. 22 - A conductor with an inner cavity, like that shown...Ch. 22 - A very large, horizontal, nonconducting sheet of...Ch. 22 - Apply Gausss law to the Gaussian surfaces S2, S3,...Ch. 22 - A square insulating sheet 80.0 cm on a side is...Ch. 22 - An infinitely long cylindrical conductor has...Ch. 22 - Two very large, nonconducting plastic sheets, each...Ch. 22 - CP At time t = 0 a proton is a distance of 0.360 m...Ch. 22 - CP A very small object with mass 8.20 109 kg and...Ch. 22 - CP A small sphere with mass 4.00 106 kg and...Ch. 22 - A cube has sides of length L = 0.300 m. One corner...Ch. 22 - The electric field E in Fig. P22.35 is everywhere...Ch. 22 - CALC In a region of space there is an electric...Ch. 22 - The electric field E1 at one face of a...Ch. 22 - A long line carrying a uniform linear charge...Ch. 22 - The Coaxial Cable. A long coaxial cable consists...Ch. 22 - A very long conducting tube (hollow cylinder) has...Ch. 22 - A very long, solid cylinder with radius R has...Ch. 22 - A Sphere in a Sphere. A solid conducting sphere...Ch. 22 - A solid conducting sphere with radius R that...Ch. 22 - A conducting spherical shell with inner radius a...Ch. 22 - Concentric Spherical Shells. A small conducting...Ch. 22 - Repeat Problem 22.45, but now let the outer shell...Ch. 22 - Prob. 22.47PCh. 22 - A solid conducting sphere with radius R carries a...Ch. 22 - CALC An insulating hollow sphere has inner radius...Ch. 22 - CP Thomsons Model of the Atom. Early in the 20th...Ch. 22 - Thomsons Model of the Atom, Continued. Using...Ch. 22 - (a) How many excess electrons must be distributed...Ch. 22 - CALC A nonuniform, but spherically symmetric,...Ch. 22 - A Uniformly Charged Slab. A slab of insulating...Ch. 22 - CALC A Nonuniformly Charged Slab. Repeat Problem...Ch. 22 - CALC A nonuniform, but spherically symmetric,...Ch. 22 - (a) An insulating sphere with radius a has a...Ch. 22 - A very long, solid insulating cylinder has radius...Ch. 22 - DATA In one experiment the electric field is...Ch. 22 - DATA The electric field is measured for points at...Ch. 22 - DATA The volume charge density for a spherical...Ch. 22 - CP CALC A region in space contains a total...Ch. 22 - Suppose that to repel electrons in the radiation...Ch. 22 - What is the magnitude of E just outside the...Ch. 22 - SPACE RADIATION SHIELDING. One of the hazards...Ch. 22 - SPACE RADIATION SHIELDING. One of the hazards...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
How fast would you have to move relative to a meter stick for it to be 99 cm long in your reference frame?
Essential University Physics (3rd Edition)
Correct your friend who says, Japans bullet trains can easily round a curve at a constant velocity of 160 kilom...
Conceptual Integrated Science
An object that has a small mass and an object that has a large mass have the same momentum. Which object has th...
University Physics Volume 1
A 0.25-mol sample of ideal gas initially occupies 3.5 L. If it takes 61 J of work to compress the gas isotherma...
Essential University Physics: Volume 1 (3rd Edition)
Patterns of Motion. In one or two paragraphs, explain why the existence of orderly patterns of motion in our so...
Life in the Universe (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The nonuniform charge density of a solid insulating sphere of radius R is given by = cr2 (r R), where c is a positive constant and r is the radial distance from the center of the sphere. For a spherical shell of radius r and thickness dr, the volume element dV = 4r2dr. a. What is the magnitude of the electric field outside the sphere (r R)? b. What is the magnitude of the electric field inside the sphere (r R)?arrow_forwardA solid conducting sphere of radius 2.00 cm has a charge 8.00 μC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a total charge −4.00 μC. Find the electric field at (a) r = 1.00 cm, (b) r = 3.00 cm, (c) r = 4.50 cm, and (d) r = 7.00 cm from the center of this charge configuration.arrow_forwardA solid, insulating sphere of radius a has a uniform charge density throughout its volume and a total charge Q. Concentric with this sphere is an uncharged, conducting, hollow sphere whose inner and outer radii are b and c as shown in Figure P19.75. We wish to understand completely the charges and electric fields at all locations. (a) Find the charge contained within a sphere of radius r a. (b) From this value, find the magnitude of the electric field for r a. (c) What charge is contained within a sphere of radius r when a r b? (d) From this value, find the magnitude of the electric field for r when a r b. (e) Now consider r when b r c. What is the magnitude of the electric field for this range of values of r? (f) From this value, what must be the charge on the inner surface of the hollow sphere? (g) From part (f), what must be the charge on the outer surface of the hollow sphere? (h) Consider the three spherical surfaces of radii a, b, and c. Which of these surfaces has the largest magnitude of surface charge density?arrow_forward
- The surface charge density on a long straight metallic pipe is . What is the electric field outside and inside the pipe? Assume the pipe has a diameter of 2a.arrow_forwardCharge Q is distributed uniformly throughout the volume of an insulating sphere of radius R = 4.00 cm. At a distance of r = 8.00 cm from the center of the sphere, the electric field due to the charge distribution has magnitude 840 N/C. The charge density is calulated as: p = 2.2×10−6 Cm3 What is the magnitude of the electric field at a distance of 2.00 cm from the sphere's center?arrow_forwardA long cylindrical insulating shell has an inner radius of a=1.43 m and an outer radius of b=1.63 m. The shell has a constant charge density of 1.6×10−9 C/m3. The picture shows an end-on cross-section of the cylindrical shell. A) What is the magnitude of the electric field at a distance of r=1.89 m from the axis? for this I got 33.939 N/C which was wrong. C) If we take the potential at the axis to be zero, what is the electric potential at the outer radius of the shell? for this I got 3.463 V which was wrongarrow_forward
- A point charge of -3.00 micro Coulomb is located in the center of a spherical cavity of radius 6.50 cm that, in turn, is at the center of an insulating charged solid sphere. The charge density in the solid is 7.35 x 10-4 C/m3. Calculate the electric field (in N/C) inside the solid at a distance of 9.50 cm from the center of the cavity. (Don't express your answers in scientific notation)arrow_forwardA point charge of -3.00 micro Coulomb is located in the center of a spherical cavity of radius 6.50 cm that, in turn, is at the center of an insulating charged solid sphere. The charge density in the solid is 7.35 x 10-4 C/m3. Calculate the electric field (in N/C) inside the solid at a distance of 9.50 cm from the center of the cavity. (Don't express your answers in scientific notation)arrow_forwardA point charge of -3.00 micro Coulomb is located in the center of a spherical cavity of radius 6.50 cm that, in turn, is at the center of an insulating charged solid sphere. The charge density in the solid is 7.35 x 10-4 C/m3. Calculate the electric field (in N/C) inside the solid at a distance of 9.50 cm from the center of the cavity. (Don't express your answers in scientific notation)arrow_forward
- A point charge of -3.00 micro Coulomb is located in the center of a spherical cavity of radius 6.50 cm that, in turn, is at the center of an insulating charged solid sphere. The charge density in the solid is 7.35 x 10-4 C/m3. Calculate the electric field (in N/C) inside the solid at a distance of 9.50 cm from the center of the cavity. (Don't express your answers in scientific notation)arrow_forwardA hollow conducting spherical shell has an outer radius R, =14.7cm and an inner radius Ra =7.45cm. The outer surface has a charge 2 placed upon it. At the center of the sphere and insulated from the shell is a charge Q1. The net surface charge density on the outer surface is 06 =5.8 1C m? and the surface charge density on the inner surface is 0 a =-2.39 Determine the charge Q2 (in C) Look at the correct answer show all workarrow_forwardAn insulating spherical shell has uniform charge 5.0 nC, inner radius a radius b 20 cm. It is concentric with a conducting spherical shell with total charge -5.0 nC, inner radius = 10 cm, and outer c = 30 cm, and outer radius d = 40 cm. a C p. Find the magnitude of the electric field at the following three distances from the center: r = 5 cm, 25 cm, and 50 cm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY