(a) At a distance of 0.200 cm from the center or a charged conducting sphere with radius 0.100 cm, the electric field is 480 N/C. What is the electric field 0.600 cm from the center of the sphere? (b) At a distance of 0.200 cm from the axis of a very long charged conducting cylinder with radius 0.100 cm, the electric field is 480 N/C. What is the electric field 0.600 cm from the axis of the cylinder? (c) At a distance of 0.200 cm from a large uniform sheet of charge, the electric field is 480 N/C. What is the electric field 1.20 cm from the sheet?
(a) At a distance of 0.200 cm from the center or a charged conducting sphere with radius 0.100 cm, the electric field is 480 N/C. What is the electric field 0.600 cm from the center of the sphere? (b) At a distance of 0.200 cm from the axis of a very long charged conducting cylinder with radius 0.100 cm, the electric field is 480 N/C. What is the electric field 0.600 cm from the axis of the cylinder? (c) At a distance of 0.200 cm from a large uniform sheet of charge, the electric field is 480 N/C. What is the electric field 1.20 cm from the sheet?
(a) At a distance of 0.200 cm from the center or a charged conducting sphere with radius 0.100 cm, the electric field is 480 N/C. What is the electric field 0.600 cm from the center of the sphere? (b) At a distance of 0.200 cm from the axis of a very long charged conducting cylinder with radius 0.100 cm, the electric field is 480 N/C. What is the electric field 0.600 cm from the axis of the cylinder? (c) At a distance of 0.200 cm from a large uniform sheet of charge, the electric field is 480 N/C. What is the electric field 1.20 cm from the sheet?
The electric field near the middle of a long, thin, uniformly charged rod is 3.57×104 N/C at a distance of 6.92 cm from the rod. If the rod's length is 10.2 m, what is the charge on the rod?
A square metal plate of edge length 9.6 cm and negligible thickness has a total charge of 5.9 × 10-6 C. (a) Estimate the magnitude E of
the electric field just off the center of the plate (at, say, a distance of 0.66 mm from the center) by assuming that the charge is spread
uniformly over the two faces of the plate. (b) Estimate E at a distance of 23 m (large relative to the plate size) by assuming that the plate
is a charged particle.
(a) Number
i
Units
(b) Number
i
Units
In this problem, a very long metallic rod with a uniform circular cross section of radius 0.35 mm has a constant charge per unit length of 1.5x10^-8 C/m.
A) Determine the electric field at a distance 0.20 mm from the longitudinal axis of the rod. (Possible answer: 0, 1.3 x 10^6 N/C, 1.8 x 10^6 N/C, 6.7 x 10^5 N/C, 7.7 x 10^5 N/C)
B) Determine the electric field at a distance 0.50 mm from the longitudinal axis of the rod. (Possible answer: 0, 1.8 x 10^6 N/C, 7.7 x 10^5 N/C, 5.4 x 10^5 N/C, 3.2 x 10^5 N/C)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.