University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 22.36P
CALC In a region of space there is an electric field
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Charge is uniformly distributed throughout a spherical insulating volume of radius R = 4.00 cm. The charge per unit volume is
8.16 μC/m³. Find the magnitude of the electric field at r = 10.0 cm. Enter a positive number if the field points radially out and
negative if the field points radially in.
i
N/C
In a uniform electric field of magnitude E, the field lines cross through a rectangle of area A at an angle of 32.9° with respect to the plane of the rectangle. What is the flux through the rectangle?
Calculate the magnitude of the flux of a constant electric field of 5.00 N/C in the z-direction through a rectangle with area 4.00 m2 in the xy-plane
Chapter 22 Solutions
University Physics (14th Edition)
Ch. 22 - A rubber balloon has a single point charge in its...Ch. 22 - Suppose that in Fig. 22.15 both charges were...Ch. 22 - In Fig. 22.15, suppose a third point charge were...Ch. 22 - A certain region of space bounded by an imaginary...Ch. 22 - A spherical Gaussian surface encloses a point...Ch. 22 - You find a sealed box on your doorstep. You...Ch. 22 - A solid copper sphere has a net positive charge....Ch. 22 - A spherical Gaussian surface encloses a point...Ch. 22 - In a conductor, one or more electrons from each...Ch. 22 - You charge up the Van de Graaff generator shown in...
Ch. 22 - Lightning is a flow of electrons. The lightning...Ch. 22 - A solid conductor has a cavity in its interior....Ch. 22 - Explain this statement: In a static situation, the...Ch. 22 - In a certain region of space, the electric field E...Ch. 22 - (a) In a certain region of space, the volume...Ch. 22 - A negative charge Q is placed inside the cavity of...Ch. 22 - A flat sheet of paper of area 0.250 m2 is oriented...Ch. 22 - A flat sheet is in the shape of a rectangle with...Ch. 22 - You measure an electric field of 1.25 106 N/C at...Ch. 22 - It was shown in Example 21.10 (Section 21.5) that...Ch. 22 - A hemispherical surface with radius r in a region...Ch. 22 - The cube in Fig. E22.6 has sides of length L =...Ch. 22 - BIO As discussed in Section 22.5, human nerve...Ch. 22 - The three small spheres shown in Fig. E22.8 carry...Ch. 22 - A charged paint is spread in a very thin uniform...Ch. 22 - A point charge q1 = 4.00 nC is located on the...Ch. 22 - C point charge is at the center of a cube with...Ch. 22 - Electric Fields in an Atom. The nuclei of large...Ch. 22 - Two very long uniform lines of charge are parallel...Ch. 22 - A solid metal sphere with radius 0.450 m carries a...Ch. 22 - How many excess electrons must be added to an...Ch. 22 - Some planetary scientists have suggested that the...Ch. 22 - A very long uniform line of charge has charge per...Ch. 22 - The electric field 0.400 m from a very long...Ch. 22 - A hollow, conducting sphere with an outer radius...Ch. 22 - (a) At a distance of 0.200 cm from the center or a...Ch. 22 - The electric field at a distance of 0.145 m from...Ch. 22 - A point charge of 3.00 C is located in the center...Ch. 22 - CP An electron is released from rest at a distance...Ch. 22 - Charge Q is distributed uniformly throughout the...Ch. 22 - A conductor with an inner cavity, like that shown...Ch. 22 - A very large, horizontal, nonconducting sheet of...Ch. 22 - Apply Gausss law to the Gaussian surfaces S2, S3,...Ch. 22 - A square insulating sheet 80.0 cm on a side is...Ch. 22 - An infinitely long cylindrical conductor has...Ch. 22 - Two very large, nonconducting plastic sheets, each...Ch. 22 - CP At time t = 0 a proton is a distance of 0.360 m...Ch. 22 - CP A very small object with mass 8.20 109 kg and...Ch. 22 - CP A small sphere with mass 4.00 106 kg and...Ch. 22 - A cube has sides of length L = 0.300 m. One corner...Ch. 22 - The electric field E in Fig. P22.35 is everywhere...Ch. 22 - CALC In a region of space there is an electric...Ch. 22 - The electric field E1 at one face of a...Ch. 22 - A long line carrying a uniform linear charge...Ch. 22 - The Coaxial Cable. A long coaxial cable consists...Ch. 22 - A very long conducting tube (hollow cylinder) has...Ch. 22 - A very long, solid cylinder with radius R has...Ch. 22 - A Sphere in a Sphere. A solid conducting sphere...Ch. 22 - A solid conducting sphere with radius R that...Ch. 22 - A conducting spherical shell with inner radius a...Ch. 22 - Concentric Spherical Shells. A small conducting...Ch. 22 - Repeat Problem 22.45, but now let the outer shell...Ch. 22 - Prob. 22.47PCh. 22 - A solid conducting sphere with radius R carries a...Ch. 22 - CALC An insulating hollow sphere has inner radius...Ch. 22 - CP Thomsons Model of the Atom. Early in the 20th...Ch. 22 - Thomsons Model of the Atom, Continued. Using...Ch. 22 - (a) How many excess electrons must be distributed...Ch. 22 - CALC A nonuniform, but spherically symmetric,...Ch. 22 - A Uniformly Charged Slab. A slab of insulating...Ch. 22 - CALC A Nonuniformly Charged Slab. Repeat Problem...Ch. 22 - CALC A nonuniform, but spherically symmetric,...Ch. 22 - (a) An insulating sphere with radius a has a...Ch. 22 - A very long, solid insulating cylinder has radius...Ch. 22 - DATA In one experiment the electric field is...Ch. 22 - DATA The electric field is measured for points at...Ch. 22 - DATA The volume charge density for a spherical...Ch. 22 - CP CALC A region in space contains a total...Ch. 22 - Suppose that to repel electrons in the radiation...Ch. 22 - What is the magnitude of E just outside the...Ch. 22 - SPACE RADIATION SHIELDING. One of the hazards...Ch. 22 - SPACE RADIATION SHIELDING. One of the hazards...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. If you observe two Cepheid variable st...
Cosmic Perspective Fundamentals
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
A proton is at the origin and an ion is at x = 5.0 nm. If the electric field is zero at x = 5.0nm, whats the io...
Essential University Physics: Volume 2 (3rd Edition)
13. A supply plane needs to drop a package of food to scientists working on a glacier in Greenland. The plane f...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Predict: which spool will reach the floor first. Explain how your answer is consistent with your extended free-...
Tutorials in Introductory Physics
28. Dave pushes his four-year-old son Thomas across the snow on a sled. As Dave pushes, Thomas speeds up. Which...
College Physics: A Strategic Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two solid spheres, both of radius 5 cm, carry identical total charges of 2 C. Sphere A is a good conductor. Sphere B is an insulator, and its charge is distributed uniformly throughout its volume. (i) How do the magnitudes of the electric fields they separately create at a radial distance of 6 cm compare? (a) EA EB = 0 (b) EA EB 0 (c) EA = EB 0 (d) 0 EA EB (e) 0 = EA EB (ii) How do the magnitudes of the electric fields they separately create at radius 4 cm compare? Choose from the same possibilities as in part (i).arrow_forwardwhat is the magnitude.of the electric flux of a constant E of 4 n/c in the z direction through a rectangle with surface area 4m^2 in the xy planearrow_forwardA thick insulating spherical shell of inner radius a=2.1R and outer radius b=7.8R has a uniform charge density p. pR What is the magnitude of the electric field at r=9.6 R ? Express your answer using one decimal place in units of €0arrow_forward
- A thick insulating cylindircal shell of inner radius a=2.5R and outer radius b=5.2R has a uniform charge density p . What is the magnitude of the electric field at r=8.2 R ? Express your answer using one decimal place in units of ?arrow_forwardA perfect conducting plane is located in the xy plane and a point charge 1.1 nC is located in the z-axis at z = 7. Find the magnitude of the electric field at the origin. Express your answer in N/Carrow_forwardA uniform electric field of magnitude 35,000 N>C makes anangle of 47° with a plane surface of area 0.0153 m2. What is theelectric flux through this surface?arrow_forward
- Find the electric field at P in the figure shown below. (Take r = 1.6 m and 0 = 44°. Measure the angle counterclockwise from the positive x-axis.) magnitude O direction P r 9= 10×10-⁹Carrow_forwardA thick insulating cylindircal shell of inner radius a=2.8R and outer radius b=5.3R has a uniform charge density p. b What is the magnitude of the electric field at r=9 R ? Express your answer using one decimal place in units of pR :? €0arrow_forwardThe flux of the electric field E = 24 i+ 30j+ 16 k (N/C), through a 3 m2 portion of the yz plane is: O a. 48 Nm2/C I need final O b. Zero answer only quickly 72 Nm?/C d. Data Insufficient I O e. 16 Nm2/Carrow_forward
- A long silver rod of radius 5 cm has a charge of -4 µC/cm on its surface. (a) Find the electric field (in N/C in the f direction) at a point 15 cm from the center of the rod (an outside point). X N/C îarrow_forwardAn electric field of magnitude E = 400 N/C points in the +x-direction for x > 0 and in the –x-direction for x < 0. A cylinder of length 30 cm and radius 10 cm has its center at the origin and its axis along the x-axis such that one end is at x = +15 cm and the other is at x = –15 cm. What is the flux through each end of the cylinder? Group of answer choices 0.25 kN·m2/C 0.13 MN·m2/C zero 1.3 kN·m2/C 13 N·m2/Carrow_forwardA square surface of area 2 cm2 is in a space of uniform electric field of magnitude 103 N/C . The amount of flux through it depends on how the square is oriented relative to the direction of the electric field. Find theelectric flux through the square, when the normal to it makes the following angles with electric field: (a) 30° , (b) 90° , and (c) 0° . Note that these angles can also be given as 180° + θ .arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY