University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 22.21E
The electric field at a distance of 0.145 m from the surface of a solid insulating sphere with radius 0.355 m is 1750 N/C. (a) Assuming the sphere’s charge is uniformly distributed, what is the charge density inside it? (b) Calculate the electric field inside the sphere at a distance of 0.200 m from the center.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The electric field at a distance of 0.154 m from the surface of an insulating solid sphere of radius 0.385 m is 1970 N/C. Assuming that the charge on the sphere is uniformly distributed, a) what is the charge density within it? b) Calculate the electric field inside the sphere at a distance of 0.150 m from the center.
A nonconducting solid sphere of radius 10.7 cm has a uniform volume charge density. The magnitude of the electric field at 21.4 cm from the sphere's center is 2.18 103 N/C.
(a) What is the sphere's volume charge density?
(b) Find the magnitude of the electric field at a distance of 5.00 cm from the sphere's center.
Positive charge is distributed in a sphere of radius R that is centered at the origin. Inside the sphere, the electric
field is Ē(r) = kr-1/4 f, where k is a positive constant. There is no charge outside the sphere.
a) How is the charge distributed inside the sphere? In particular, find an equation for the charge density, p.
b) Determine the electric field, E(r), for r > R (outside the sphere).
c) What is the potential difference between the center of the sphere (r = 0) and the surface of the sphere
(r = R)?
d) What is the energy stored in this electric charge configuration?
Chapter 22 Solutions
University Physics (14th Edition)
Ch. 22 - A rubber balloon has a single point charge in its...Ch. 22 - Suppose that in Fig. 22.15 both charges were...Ch. 22 - In Fig. 22.15, suppose a third point charge were...Ch. 22 - A certain region of space bounded by an imaginary...Ch. 22 - A spherical Gaussian surface encloses a point...Ch. 22 - You find a sealed box on your doorstep. You...Ch. 22 - A solid copper sphere has a net positive charge....Ch. 22 - A spherical Gaussian surface encloses a point...Ch. 22 - In a conductor, one or more electrons from each...Ch. 22 - You charge up the Van de Graaff generator shown in...
Ch. 22 - Lightning is a flow of electrons. The lightning...Ch. 22 - A solid conductor has a cavity in its interior....Ch. 22 - Explain this statement: In a static situation, the...Ch. 22 - In a certain region of space, the electric field E...Ch. 22 - (a) In a certain region of space, the volume...Ch. 22 - A negative charge Q is placed inside the cavity of...Ch. 22 - A flat sheet of paper of area 0.250 m2 is oriented...Ch. 22 - A flat sheet is in the shape of a rectangle with...Ch. 22 - You measure an electric field of 1.25 106 N/C at...Ch. 22 - It was shown in Example 21.10 (Section 21.5) that...Ch. 22 - A hemispherical surface with radius r in a region...Ch. 22 - The cube in Fig. E22.6 has sides of length L =...Ch. 22 - BIO As discussed in Section 22.5, human nerve...Ch. 22 - The three small spheres shown in Fig. E22.8 carry...Ch. 22 - A charged paint is spread in a very thin uniform...Ch. 22 - A point charge q1 = 4.00 nC is located on the...Ch. 22 - C point charge is at the center of a cube with...Ch. 22 - Electric Fields in an Atom. The nuclei of large...Ch. 22 - Two very long uniform lines of charge are parallel...Ch. 22 - A solid metal sphere with radius 0.450 m carries a...Ch. 22 - How many excess electrons must be added to an...Ch. 22 - Some planetary scientists have suggested that the...Ch. 22 - A very long uniform line of charge has charge per...Ch. 22 - The electric field 0.400 m from a very long...Ch. 22 - A hollow, conducting sphere with an outer radius...Ch. 22 - (a) At a distance of 0.200 cm from the center or a...Ch. 22 - The electric field at a distance of 0.145 m from...Ch. 22 - A point charge of 3.00 C is located in the center...Ch. 22 - CP An electron is released from rest at a distance...Ch. 22 - Charge Q is distributed uniformly throughout the...Ch. 22 - A conductor with an inner cavity, like that shown...Ch. 22 - A very large, horizontal, nonconducting sheet of...Ch. 22 - Apply Gausss law to the Gaussian surfaces S2, S3,...Ch. 22 - A square insulating sheet 80.0 cm on a side is...Ch. 22 - An infinitely long cylindrical conductor has...Ch. 22 - Two very large, nonconducting plastic sheets, each...Ch. 22 - CP At time t = 0 a proton is a distance of 0.360 m...Ch. 22 - CP A very small object with mass 8.20 109 kg and...Ch. 22 - CP A small sphere with mass 4.00 106 kg and...Ch. 22 - A cube has sides of length L = 0.300 m. One corner...Ch. 22 - The electric field E in Fig. P22.35 is everywhere...Ch. 22 - CALC In a region of space there is an electric...Ch. 22 - The electric field E1 at one face of a...Ch. 22 - A long line carrying a uniform linear charge...Ch. 22 - The Coaxial Cable. A long coaxial cable consists...Ch. 22 - A very long conducting tube (hollow cylinder) has...Ch. 22 - A very long, solid cylinder with radius R has...Ch. 22 - A Sphere in a Sphere. A solid conducting sphere...Ch. 22 - A solid conducting sphere with radius R that...Ch. 22 - A conducting spherical shell with inner radius a...Ch. 22 - Concentric Spherical Shells. A small conducting...Ch. 22 - Repeat Problem 22.45, but now let the outer shell...Ch. 22 - Prob. 22.47PCh. 22 - A solid conducting sphere with radius R carries a...Ch. 22 - CALC An insulating hollow sphere has inner radius...Ch. 22 - CP Thomsons Model of the Atom. Early in the 20th...Ch. 22 - Thomsons Model of the Atom, Continued. Using...Ch. 22 - (a) How many excess electrons must be distributed...Ch. 22 - CALC A nonuniform, but spherically symmetric,...Ch. 22 - A Uniformly Charged Slab. A slab of insulating...Ch. 22 - CALC A Nonuniformly Charged Slab. Repeat Problem...Ch. 22 - CALC A nonuniform, but spherically symmetric,...Ch. 22 - (a) An insulating sphere with radius a has a...Ch. 22 - A very long, solid insulating cylinder has radius...Ch. 22 - DATA In one experiment the electric field is...Ch. 22 - DATA The electric field is measured for points at...Ch. 22 - DATA The volume charge density for a spherical...Ch. 22 - CP CALC A region in space contains a total...Ch. 22 - Suppose that to repel electrons in the radiation...Ch. 22 - What is the magnitude of E just outside the...Ch. 22 - SPACE RADIATION SHIELDING. One of the hazards...Ch. 22 - SPACE RADIATION SHIELDING. One of the hazards...
Additional Science Textbook Solutions
Find more solutions based on key concepts
31. A long wire carrying a 6.00 A current reverses direction by means of two right-angle bends, as shown in Fig...
College Physics (10th Edition)
The speed of the person sitting on the chair relative to the chair and relative to Earth.
Conceptual Physics (12th Edition)
68. * Snorkeling A 60-kg snorkeler (including snorkel, mask, and other gear) displaces of water when 1.2 m und...
College Physics
The potential difference at which coil operates.
Physics (5th Edition)
(II) Determine the vector given the vectors and in Fig. 3-38.
FIGURE 3–38
Problems 10, 11, 12, 13, and 14 V...
Physics for Scientists and Engineers with Modern Physics
The specific heat capacity of Albertsons Rotini Tricolore is approximately 1.8J/gC. Suppose you toss 340 g of t...
An Introduction to Thermal Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The electric field 10.0 cm from the surface of a copper ball of radius 5.0 cm is directed toward the ball's center and has magnitude 4.0102 N/C. How much charge is on the surface of the ball?arrow_forwardThe surface charge density on a long straight metallic pipe is . What is the electric field outside and inside the pipe? Assume the pipe has a diameter of 2a.arrow_forwardAn insulating solid sphere of radius a has a uniform volume charge density and carries a total positive charge Q. A spherical gaussian surface of radius r, which shares a common center with the insulating sphere, is inflated starting from r = 0. (a) Find an expression for the electric flux passing through the surface of the gaussian sphere as a function of r for r a. (b) Find an expression for the electric flux for r a. (c) Plot the flux versus r.arrow_forward
- Two infinite, nonconducting sheets of charge are parallel to each other as shown in Figure P19.73. The sheet on the left has a uniform surface charge density , and the one on the right hits a uniform charge density . Calculate the electric field at points (a) to the left of, (b) in between, and (c) to the right of the two sheets. (d) What If? Find the electric fields in all three regions if both sheets have positive uniform surface charge densities of value .arrow_forwardA long, straight wire is surrounded by a hollow metal cylinder whose axis coincides with that of the wire. The wire has a charge per unit length of , and the cylinder has a net charge per unit length of 2. From this information, use Gausss law to find (a) the charge per unit length on the inner surface of the cylinder, (b) the charge per unit length on the outer surface of the cylinder, and (c) the electric field outside the cylinder a distance r from the axis.arrow_forwardA solid, insulating sphere of radius a has a uniform charge density throughout its volume and a total charge Q. Concentric with this sphere is an uncharged, conducting, hollow sphere whose inner and outer radii are b and c as shown in Figure P19.75. We wish to understand completely the charges and electric fields at all locations. (a) Find the charge contained within a sphere of radius r a. (b) From this value, find the magnitude of the electric field for r a. (c) What charge is contained within a sphere of radius r when a r b? (d) From this value, find the magnitude of the electric field for r when a r b. (e) Now consider r when b r c. What is the magnitude of the electric field for this range of values of r? (f) From this value, what must be the charge on the inner surface of the hollow sphere? (g) From part (f), what must be the charge on the outer surface of the hollow sphere? (h) Consider the three spherical surfaces of radii a, b, and c. Which of these surfaces has the largest magnitude of surface charge density?arrow_forward
- Charge Q is distributed uniformly throughout the volume of an insulating sphere of radius R = 4.00 cm. At a distance of r = 8.00 cm from the center of the sphere, the electric field due to the charge distribution has magnitude E = 940 N/C. What are (a) the volume charge density for the sphere and (b) the electric field at a distance of 2.00 cm from the sphere’s center?arrow_forwardThe volume charge density ρ for a spherical charge distribution of radius R= 6.00 mm is not uniform. (Figure 1) shows ρ as a function of the distance r from the center of the distribution. a)Calculate the electric field at r = 1.00 mm. b)Calculate the electric field at r = 1.00 mm.arrow_forwardQ: A long thin wire carrying a uniform line charge density +λ runs down the center of a long cylindrical tube of radius R carrying a line charge density -2λ distributed uniformly over its surface. Find expressions for the electric field as a function of radial distance r from the axis of the wire for (a) r<R and (b) r>R. Use a minus sign to indicate a field pointing inward. In this question would area, A=2πrL where L is the length of the wire and why is that?arrow_forward
- A line of charge is surrounded by another charged cylindrical shell. The line and the shell are concentric. Charge density of the line is 1 = -6 µC/m. Cylindrical shell is made up of a conducting material with inner radius 7 cm and outer radius 10 cm, and cylinder height 25 cm. The charge on the shell is Q = 4 µC. 11. a) Find the electric field at points 3 cm away from the line. b) Show the charge distribution of the cylinder and find the electric field at a point inside the shell. c) Find the electric field at a point 12 cm from the center. 25cm Answers: a) E = 3.6 x106 N/C (radially inward); b) E=0 ; d) E= 1.5 x 106 N/C (radially outward) -1.5 μC +1.5 µC 42.5 μCarrow_forwardFind the electric field at the origin of the x,y-plane for charge distributions (a) and (b), see the figures shown below. The field is produced (a) by a thin half-circle with a radius of 15 cm and the linear charge density K-10 pc/cm and (b) by a thin quarter-circle with the same radius and the linear charge density K = -10 pc/cm. K>0 (a) For the charge distribution (a): The x-component of Ea. Ea,x= The y-component of Ea, Ea,y= For the charge distribution (b): The x-component of Eb, Eb,x- The y-component of Eb, Eb,y = Units N/C Units N/C Units N/C Units N/C K<0 (b)arrow_forwardThe electric field at a distance of 0.157 m from the surface of a solid insulating sphere with radius 0.361 m is 1730 N/C. Part A Assuming the sphere's charge is uniformly distributed, what is the charge density inside it? Part B Calculate the electric field inside the sphere at a distance of 0.214 mfrom the center.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY