Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 22, Problem 22.16E
Interpretation Introduction
Interpretation:
The reason as to why the same expression is not obtained when the Laplace-Young equation is derived in a different and incorrect way by writing the area of a sphere in terms of volume and then evaluating
Concept introduction:
Laplace-Young equation is a fundamental equation for the behavior of an interface. This equation relates the pressure difference on either side of an interface with the surface tension and the area of the liquid changes with volume. The Laplace-Young equation is shown below.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The energy of the van der Waals bond, which is responsible for a number of the characteristics of water, is about 0.50 eV. (a) At what temperature would the average translational kinetic energy of water molecules be equal to this energy? (b) At that temperature, would water be liquid or gas? Under ordinary everyday conditions, do van der Waals forces play a role in the behavior of water?
1.3 mole of helium gas at a temperature of 276 K is confined to a cubical container whose sides are 12 cm long.Find the mean summed kinetic energy of ALL the atoms in the container in [J].
1.44. The van der Waals constant b can be used to estimate
molecular sizes, assuming the molecules are shaped like
spheres: 1. Convert b to units of m³/mol, using the fact that
1 m³ = 1000 L. 2. Divide by Avogadro's number to get the
individual molecular contribution to b. 3. Use V = 4/3 πr³
to estimate the radius of the molecule. Using these steps,
estimate the sizes of (a) He (b) H₂O (c) C₂H6-
Chapter 22 Solutions
Physical Chemistry
Ch. 22 - Using the explanation of unbalanced forces as the...Ch. 22 - Show that the right side of equation 22.1 has...Ch. 22 - The text claims that surface tension varies with...Ch. 22 - Prob. 22.4ECh. 22 - Prob. 22.5ECh. 22 - Prob. 22.6ECh. 22 - Prob. 22.7ECh. 22 - Equation 22.6 defines surface tension in terms of...Ch. 22 - Prob. 22.9ECh. 22 - Prob. 22.10E
Ch. 22 - Prob. 22.11ECh. 22 - Prob. 22.12ECh. 22 - Prob. 22.13ECh. 22 - Prob. 22.14ECh. 22 - Prob. 22.15ECh. 22 - Prob. 22.16ECh. 22 - Prob. 22.17ECh. 22 - Prob. 22.18ECh. 22 - Prob. 22.19ECh. 22 - Determine the pressure difference on a droplet of...Ch. 22 - Prob. 22.21ECh. 22 - Prob. 22.22ECh. 22 - Prob. 22.23ECh. 22 - Prob. 22.24ECh. 22 - Prob. 22.25ECh. 22 - Prob. 22.26ECh. 22 - Prob. 22.27ECh. 22 - The Young-Dupr equation, equation 22.16, is...Ch. 22 - Why are capillary rises and depressions not seen...Ch. 22 - Prob. 22.30ECh. 22 - Prob. 22.31ECh. 22 - Prob. 22.32ECh. 22 - Prob. 22.33ECh. 22 - Prob. 22.34ECh. 22 - Prob. 22.35ECh. 22 - Prob. 22.36ECh. 22 - Prob. 22.37ECh. 22 - Prob. 22.38ECh. 22 - A china cup breaks when the ionic or covalent...Ch. 22 - Satellites in space often suffer from vacuum...Ch. 22 - Prob. 22.41ECh. 22 - Prob. 22.42ECh. 22 - Prob. 22.43ECh. 22 - Are the following processes examples of...Ch. 22 - Prob. 22.45ECh. 22 - Early attempts to coat metals with Teflon, poly...Ch. 22 - Prob. 22.47ECh. 22 - Prob. 22.48ECh. 22 - Prob. 22.49E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Why is nitrogen a good choice for the study of ideal gas behavior around room temperature?arrow_forwardThis relationship is known as Graham’s Law of Effusion. Since both gases are at the same temperature, they must have the same average kinetic energy (½ mv2), where m is mass and v is velocity (like speed). Since both gases have the same average kinetic energy, you can state that ½ mLvL2 = ½ mHvH2. Multiplying both sides by 2 gives you mLvL2 = mHvH2. Rearranging the equation to get both masses on the same side of the equation will give you mL/mH = VH2/VL2. In 3a and 3b, you probably noticed that the heavy gas particles took twice as long to diffuse as the light gas particles. This means that the light gas particles are moving twice as fast, VH/VL = ½. Therefore, VH2/VL2 = ¼. If the light gas was Ne, what would be a reasonable identity for the heavy gas? Explain.arrow_forwardTo prevent tank rupture during deep-space travel, an engineering team is studying the effect of temperature on gases confined to small volumes. What is the pressure of 2.00 molmol of gas DD measured at 251 ∘C∘C in a 1.75-LL container assuming real behavior?arrow_forward
- Experiments carried out by French chemists Jacques Alexandre César Charles and Joseph-Louis Gay-Lussac and British physicist Lord Kelvin determined a quantitative relationship between the volume and temperature of a gas. Their data showed that for a container of gas held at constant pressure, the volume and temperature are directly proportional. For example, if you inflate a balloon outdoors with cold air on a cold day and then take it inside, it will expand, and it might even burst. This happens because as the temperature of the air inside the balloon increases, the volume of the balloon increases as well. What is less obvious is the quantitative relation: If the pressure is held constant, then when the temperature is doubled, the volume is doubled as well. Part A According to Charles's law, for a fixed quantity of gas at constant pressure, which of the given quantities is constant? ► View Available Hint(s) OF O VXT O V +T Submit Part B A balloon was filled to a volume of 2.50 L when…arrow_forwardA closed-ended manometer is filled with gas. The ∆h of the column of Hg in the manometer is3.56 cm. What is the pressure of gas in the manometer (in atm)?arrow_forwardMethane CH4 is a gas at room temperature. What is its root mean square velocityarrow_forward
- where m stands for the mass of the particle, v stands for the particle speed, T stands for the Temperature of the system, and k stands for the Boltzmann constant. What would be the relative average kinetic energies for the helium, neon, and argon at 100K? (think about what this would mean for each variable) Explain how you assigned the relative positions of each gas.arrow_forwardTo prevent tank rupture during deep-space travel, an engineering team is studying the effect of temperature on gases confined to small volumes. What is the pressure of 2.00 molmol of gas DD measured at 251 ∘C∘C in a 1.75-LL container assuming ideal behavior?arrow_forwardIn the Dumas-bulb technique for determining the molar mass of an unknown liquid, you vaporize the sample of a liquid that boils below 100 °C in a boiling-water bath and determine the mass of vapor required to fill the bulb (see drawing (Figure 1)). Part A unknown vapor, 1.013 g ; volume of bulb, 355 cm3 ; From the following data, calculate the molar mass of the unknown liquid: mass pressure, 742 torr ; temperature, 99 °C ΑΣφ. ? MM = g/mol Submit Request Answerarrow_forward
- Explain the observations listed below using the Kinetic Molecular Theory. (a) When a balloon is placed into an environment where its temperature goes down, its volume decreases; this happens regardless of the gas that is in the balloon. (b) When the balloon which was just described from above is cooled even further, its volume doesn't become zero; instead, the gas condenses or deposits out. (c) If NH3 gas is injected at one end of a long tube while HCI gas is injected simultaneously at the other end, ammonium chloride forms in the tube after a few minutes. The formation is closer to the HCl end of the tube than the NH3 end. (d) A flag moves back and forth in the wind.arrow_forwardConsider the Beer's Law equation: A=εbc . Give the correct description of the variable AND units we will be using. A epsilon b carrow_forwardExplain the term 'partial pressure' and why Dalton's lawis a limiting law.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
DISTINCTION BETWEEN ADSORPTION AND ABSORPTION; Author: 7activestudio;https://www.youtube.com/watch?v=vbWRuSk-BhE;License: Standard YouTube License, CC-BY
Difference Between Absorption and Adsorption - Surface Chemistry - Chemistry Class 11; Author: Ekeeda;https://www.youtube.com/watch?v=e7Ql2ZElgc0;License: Standard Youtube License