Physical Chemistry
Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
bartleby

Concept explainers

Question
Book Icon
Chapter 22, Problem 22.5E
Interpretation Introduction

(a)

Interpretation:

The work done needed to increase the surface area of a pool of chloroform by 50.0cm2 is to be calculated.

Concept introduction:

The atoms or molecules at the surface of the liquid are considered as a film. The atoms or molecules in bulk imply a force on the atoms or molecules at the surface of the liquid and tends to minimize the surface area of the liquid. This phenomenon is known as the surface tension of the liquid.

Expert Solution
Check Mark

Answer to Problem 22.5E

The work done required to increase the surface area of a pool of chloroform by 50.0cm2 is 1.355×104J.

Explanation of Solution

The work done to increase the surface area is calculated by the formula shown below.

w=γΔA …(1)

Where,

γ is the surface tension.

ΔA is the change in surface area.

The conversion of dyncm1 into ergcm2 is shown below.

1dyncm1=1ergcm2

Therefore, conversion of 27.1dyncm1 into ergcm2 is shown below.

27.1dyncm1=27.1ergcm2

The value of γ and ΔA are 27.1ergcm2 and 50.0cm2.

Substitute the values of γ and ΔA in equation (1).

w=27.1ergcm2×50.0cm2=1355erg

The conversion of erg into J is shown below.

1erg=107J

Therefore,

1355erg=1355×107J=1.355×104J

Conclusion

The work done to increase the surface area of pool of chloroform by 50.0cm2 is 1.355×104J.

Interpretation Introduction

(b)

Interpretation:

The work done to make the film of chloroform having area of 0.010m2 is to be calculated.

Concept introduction:

The atoms or molecules at the surface of the liquid are considered as a film. The atoms or molecules in bulk imply a force on the atoms or molecules at the surface of the liquid and tends to minimize the surface area of the liquid. This phenomenon is known as the surface tension of the liquid.

Expert Solution
Check Mark

Answer to Problem 22.5E

The work done to make the film of chloroform having area of 0.010m2 is 2.71×104J.

Explanation of Solution

The making of film is same as increasing the surface area of a liquid. Therefore, the work done to make the film of chloroform is calculated by the formula given below.

w=γΔA …(1)

Where,

γ is the surface tension.

ΔA is the change in surface area.

The conversion of dyncm1 into ergcm2 is shown below.

1dyncm1=1ergcm2

Therefore, the conversion of 27.1dyncm1 into ergcm2 is shown below.

27.1dyncm1=27.1ergcm2

The conversion of m2 into cm2 is done as shown below.

1m2=104cm2

Therefore, the conversion of 0.010m2 into cm2 is done as shown below.

0.010m2=0.010×104cm2=102cm2

The value of γ and ΔA are 27.1ergcm2 and 102cm2.

Substitute the values of γ and ΔA in equation (1).

w=γΔA=27.1ergcm2×102cm2=2710erg

The conversion of erg into J is shown below.

1erg=107J

Therefore,

2710erg=2710×107J=2.71×104J

Conclusion

The work done to make the film of chloroform having area of 0.010m2 is 2.71×104J.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A student experimentally determines the gas law constant, R, by reacting a small piece of magnesium with excess hydrochloric acid and then collecting the hydrogen gas over water in a eudiometer. Based L-atm on experimentally collected data, the student calculates R to equal 0.0832 mol·K L-atm Ideal gas law constant from literature: 0.08206 mol·K (a) Determine the percent error for the student's R-value. Percent error = % (b) For the statements below, identify the possible source(s) of error for this student's trial. The student notices a large air bubble in the eudiometer after collecting the hydrogen gas, but does not dislodge it. The student does not clean the zinc metal with sand paper. The student does not equilibrate the water levels within the eudiometer and the beaker at the end of the reaction. The water level in the eudiometer is 1-inch above the water level in the beaker. The student uses the barometric pressure for the lab to calculate R.
Effervescent tablets contain both citric acid (C6H8O7) and sodium bicarbonate (NaHCO3) and release carbon dioxide gas when dissolved in water as well as forming trisodium citrate (Na3C6H5O7) and water. A typical effervescent tablet contains 1.00 g of citric acid and 1.92 g sodium bicarbonate. (a) Assuming that carbon dioxide acts as an ideal gas, determine the work done due to the evolution of carbon dioxide by the dissolution of one effervescent tablet in water at 25.0 °C and atmospheric pressure (1 atm i.e. 101325 Pa).
Given that a 10.0g sample of ice at 0.0 degrees celsius melts and then the resultant water proceeds to warm to 20.0 degrees celsius, there are two separate processes (dealing with the transfer of heat) that describe the occurence. What are those two processes? (Hint one involves the specific heat of water).    Determine the delta H of the following reactions: CH4 (g) +2O2(g) → CO2 (g) +2H2O(l) CH4 (g) +2O2(g) → CO2 (g) +2H2O(g)   What is the numerical difference between these two values? What is the only physical difference between the two reactions? What does the numerical difference represent, in terms of the physical difference between the two reactions?   A 4.00g sample of rocket fuel was combusted in a bomb calorimeter according to the following reaction: 2CH6N2(l)+ 5O2(g) →  2N2(g) +2CO2(g) + 6H2O(l)   The temperature of the surrounding calorimeter increased from 25.00C to 39.50 C and the heat capacity of the calorimeter was previously determined to be 7.794KJ/c. What is the…
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,