Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 20, Problem 6Q
A box contains 100 atoms in a configuration that has 50 atoms in each half of the box. Suppose that you could count the different microstates associated with this configuration at the rate of 100 billion states per second, using a supercomputer. Without written calculation, guess how much computing time you would need: a day, a year, or much more than a year.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A box contains 100 atoms in a configuration that has 50 atoms in each half of the box. Suppose that you could count the different microstates associated with this configuration at the rate of 100 billion states per second, using a supercomputer. Without written calculation, guess how much computing time you would need: a day, a year, or much more than a year.
Estimate the number of people in the world who are suffering from the common cold on any
given day. (Remember that a person suffers from a cold for about a week, and assume that
the average person catches a cold twice a year. The population of Earth is approximately seven
billion.)
O 10²
O 105
O 108
O 10¹3
(a) Considering the numbers of heads and tails, how
many macrostates are there when five coins are tossed?
(b) What is the total number of possible microstates in
tossing five coins? (c) Find the number of microstates for
each macrostate and be sure that the total agrees with
your answer to part (b).
Chapter 20 Solutions
Fundamentals of Physics Extended
Ch. 20 - Point i in Fig. 20-19 represents the initial state...Ch. 20 - In lour experiments, blocks A and B, starting ill...Ch. 20 - A gas, confined to an insulated cylinder, is...Ch. 20 - An ideal monatomic gas at initial temperature T0...Ch. 20 - In four experiments, 2.5 mol of hydrogen gas...Ch. 20 - A box contains 100 atoms in a configuration that...Ch. 20 - Does the entropy per cycle increase, decrease, or...Ch. 20 - Three Carnot engines operate between temperature...Ch. 20 - An inventor claims to have invented four engines,...Ch. 20 - Does the entropy per cycle increase, decrease, or...
Ch. 20 - SSM Suppose 4.00 mol of an ideal gas undergoes a...Ch. 20 - An ideal gas undergoes a reversible isothermal...Ch. 20 - ILW A 2.50 mol sample of an ideal gas expands...Ch. 20 - How much energy must be transferred as heat for a...Ch. 20 - ILW Find a the energy absorbed as heat and b the...Ch. 20 - a What is the entropy change of a 12.0 g ice cube...Ch. 20 - ILW A 50.0 g block of copper whose temperature is...Ch. 20 - At very low temperatures, the molar specific heat...Ch. 20 - A 10 g ice cube at 10oC is placed in a lake whose...Ch. 20 - A 364 g block is put in contact with a thermal...Ch. 20 - SSM WWW In an experiment, 200 g of aluminum with a...Ch. 20 - A gas sample undergoes a reversible isothermal...Ch. 20 - In the irreversible process of Fig. 20-5, let the...Ch. 20 - Prob. 14PCh. 20 - A mixture of 1773 g of water and 227 g of ice is...Ch. 20 - GO An 8.0 g ice cube at -10C is put into a Thermos...Ch. 20 - Prob. 17PCh. 20 - GO A 2.0 mol sample of an ideal monatomic gas...Ch. 20 - Suppose 1.00 mol of a monatomic ideal gas is taken...Ch. 20 - Expand 1.00 mol of an monatomic gas initially at...Ch. 20 - GO Energy can be removed from water as heat at and...Ch. 20 - GO An insulated Thermos contains 130 g of water at...Ch. 20 - A Carnot engine whose low-temperature reservoir is...Ch. 20 - A Carnot engine absorbs 52 kJ as heat and exhausts...Ch. 20 - A Carnot engine has an efficiency of 22.0. It...Ch. 20 - In a hypothetical nuclear fusion reactor, the fuel...Ch. 20 - SSM WWW A Carnot engine operates between 235C and...Ch. 20 - In the first stage of a two-stage Carnot engine,...Ch. 20 - GO Figure 20-27 shows a reversible cycle through...Ch. 20 - A 500 W Carnot engine operates between...Ch. 20 - The efficiency of a particular car engine is 25...Ch. 20 - GO A Carnot engine is set up to produce a certain...Ch. 20 - SSM ILW Figure 20-29 shows a reversible cycle...Ch. 20 - GO An ideal gas 1.0 mol is the working substance...Ch. 20 - The cycle in Fig. 20-31 represents the operation...Ch. 20 - How much work must be done by a Carnot...Ch. 20 - SSM A heat pump is used to heal a building, The...Ch. 20 - The electric motor of a heat pump transfers energy...Ch. 20 - SSM A Carnot air conditioner lakes energy from the...Ch. 20 - To make ice, a freezer that is a reverse Carnot...Ch. 20 - ILW An air conditioner operating between 93F and...Ch. 20 - The motor in a refrigerator has a power of 200 W....Ch. 20 - GO Figure 20-32 represents a Carnot engine that...Ch. 20 - a During each cycle, a Carnot engine absorbs 750 J...Ch. 20 - Prob. 45PCh. 20 - A box contains N identical gas molecules equally...Ch. 20 - SSM WWW A box contains N gas molecules, Consider...Ch. 20 - Four particles are in the insulated box of Fig....Ch. 20 - A cylindrical copper rod of length 1.50 m and...Ch. 20 - Suppose 0.550 mol of an ideal gas is isothermally...Ch. 20 - Prob. 51PCh. 20 - Suppose 1.0 mol of a monatomic ideal gas initially...Ch. 20 - GO Suppose that a deep shaft were drilled in...Ch. 20 - What is the entropy change for 3.20 mol of an...Ch. 20 - A 600 g lump of copper at 80.0C is placed in 70.0...Ch. 20 - Figure 20-33 gives the force magnitude F versus...Ch. 20 - The temperature of 1.00 mol of a monatomic ideal...Ch. 20 - Repeat Problem 57, with the pressure now kept...Ch. 20 - SSM A 0.600 kg sample of water is initially ice at...Ch. 20 - A three-step cycle is undergone by 3.4 mol of an...Ch. 20 - An inventor has built an engine X and claims that...Ch. 20 - Suppose 2.00 mol of a diatomic gas is taken...Ch. 20 - A three-step cycle is undergone reversibly by 4.00...Ch. 20 - a A Carnot engine operates between a hot reservoir...Ch. 20 - A 2.00 mol diatomic gas initially at 300 K...Ch. 20 - An ideal refrigerator does 150 J of work to remove...Ch. 20 - Suppose that 260 J is conducted from a...Ch. 20 - An apparatus that liquefies helium is in a room...Ch. 20 - GO A brass rod is in thermal contact with a...Ch. 20 - A 45.0 g block of tungsten at 30.0C and a 25.0 g...Ch. 20 - Prob. 71PCh. 20 - Calculate the efficiency of a fossil-fuel power...Ch. 20 - SSM A Carnot refrigerator extracts 35.0 kJ as heat...Ch. 20 - A Carnot engine whose high-temperature reservoir...Ch. 20 - SSM System A of three particles and system B of...Ch. 20 - Figure 20-36 shows a Carnot cycle on a T-S...Ch. 20 - Find the relation between the efficiency of a...Ch. 20 - A Carnot engine has a power of 500 W. It operates...Ch. 20 - In a real refrigerator, the low-temperature coils...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Q8. Perform the calculation to the correct number of significant figures.
a) 0.121
b) 0.12
c) 0.12131
d) 0.121...
Chemistry: A Molecular Approach (4th Edition)
An obese 55-year-old woman consults her physician about minor chest pains during exercise. Explain the physicia...
Biology: Life on Earth with Physiology (11th Edition)
Which compound is more easily decarboxylated?
Organic Chemistry (8th Edition)
The new pressure of the gas needs to be determined. Concept Introduction: The ideal gas equation is represented...
Living By Chemistry: First Edition Textbook
50. A ball is thrown toward a cliff of height h with a speed of 30 m/s and an angle of 600 above horizontal. I...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Which of the following factors would tend to increase membrane fluidity? A. a greater proportion of unsaturated...
Campbell Biology in Focus (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Avagadro's number (6.023 × 1023) is a pure (unitless) number which serves as a good standard for measuring the number of molecules in ideal gases at STP. A)What is the volume, in cubic kilometers, of Avogadro’s number of sand grains, if each grain is a cube with an edge length of 1.3 mm and the cubes are densely packed (with no air between them). B) How long, in kilometers, would a beach have to be for this sand to cover it to a depth of 10.0 m? Assume a beach is 100.0 m wide, and you can neglect the air spaces between the grains.arrow_forwardThe average electricity consumption of a house in Gainesville is known to be 1,036 kWh in a month (One month = 30 days). They would like to install solar panels of 30 % efficiency to generate this electricity. Given that the average solar power density in Gainesville is 5.47 kWh/m2/day, how much surface area must the panels occupy? Calculate the result in m² but do not write the unit. Round off you E swer to a whole number (zero decimal place.)arrow_forwardA system's "entropy" is (a) the amount of work the system can do. (b) the amount of microscopic work the system can do. (c) the amount of force the system could exert. (d) the amount of thermal energy in the system. (e) the amount of microscopic disorganization in the system.arrow_forward
- A certain type of rice has an average grain length and diameter of 6 mmmm and 2 mmmm, respectively (assume that a graine has a form of a cylinder). One cup of this rice, after being cooked, contains about 785 food calories. Assume the cup volume is 240 cm3cm3. How many grains are there in 1 cup of rice? Assume perfect packing of the grains of rice (no unoccupied volume in the cup). Express your answer using one significant digit.arrow_forward22. (2 points) What is the probability that exactly two customers arriving at the drive through lane in a fifteen minutes interval? (a) 0.2249 (b) 0.1378 (c) 0.2375 (d) 0.1237 23. (2 points) What is the probability that less than two customers arrive at the drive through lane in a fifteen minutes interval? (а) 0.2759 (b) 0.1991 (c) 0.1245 (d) 0.1874 24. (2 points) What is the probability that two or more customers arrive at the drive through lane in a fifteen minutes interval? (а) 0.8236 (b) 0.8009 (c) 0.7235 (d) 0.8921arrow_forwardThe equation for the ideal gas is (P – a/V2) (V-b) = K. Here P is the pressure, V is the volume of the gas. If a and b are constants, what is the the units of a/b.arrow_forward
- The average life expectancy in Japan is 81 years. What is this time in SI units?arrow_forward(a) Suppose that a person has an average heart rate of 72.0 beats/mm. How many beats does he or she have in 2.0 years? (b) In 2.00 years? (c) In 2.000 years?arrow_forwardProblem 5: Any ideal gas at standard temperature and pressure (STP) has a number density (atoms per unit volume) of p = N/V = 2.68 × 1025 m²3. How many atoms are there in 11 cubic micrometers, at STP? N =| atomsarrow_forward
- For a system of n distinguishable particles to be distributed in two similar compartments, the total number of microstates for n particles is _____.arrow_forwardThis was wrong. Can you solve this again with these numbers? What is the root mean square velocity, vrms, for Hydrogen molecules (H2) at 20oC? Hint: How many amu does an H2 molecule contain. 1 amu = 1.67 x 10-27 kg Boltzman's Constant, k = 1.38 x 10-23 J/K Give your answer in m/s to 4 significant figures (NO DECIMALS)arrow_forwardAn atom of neon has a radius Ne-38. pm and an average speed in the gas phase at 25°C of 350.m/s. Suppose the speed of a neon atom at 25°C has been measured to within 0.10%. Calculate the smallest possible length of box inside of which the atom could be known to be located with certainty. Write your answer as a multiple of "Ne and round it to 2 significant figures. For example, if the smallest box the atom could be in turns out to be 42.0 times the radius of an atom of neon, you would enter "42.Ne" as your answer. [arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY