GO Energy can be removed from water as heat at and even below the normal freezing point (0.0°C at atmospheric pressure) without causing the water to freeze; the water is then said to be supercooled. Suppose a 1.00 g water drop is supercooled until its temperature is that of the surrounding air, which is at −5.00°C. The drop then suddenly and irreversibly freezes, transferring energy to the air as heat. What is the entropy change for the drop? (Hint:Use a three-step reversible process as if the water were taken through the normal freezing point.) The specific heat of ice is 2220 J/kg · K.
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Brock Biology of Microorganisms (15th Edition)
Chemistry & Chemical Reactivity
Campbell Biology: Concepts & Connections (9th Edition)
Introductory Chemistry (6th Edition)
Microbiology with Diseases by Body System (5th Edition)
- Consider the latent heat of fusion and the latent heat of vaporization for H2O, 3.33 105 J/kg and 2.256 106 J/kg, respectively. How much heat is needed to a. melt 2.00 kg of ice and b. vaporize 2.00 kg of water? Assume the temperatures of the ice and steam are at the melting point and vaporization point, respectively. (a). UsingEq21.9, Q = mLF = (2.00 kg) (3.33l05 J/kg) = 6.66105 J (b).UsingEq21.10. Q = mLV = (2.00kg) (2.256106 J/kg) = 14.51106 Jarrow_forwardFor a temperature increase of 10 at constant volume, what is the heat absorbed by (a) 3.0 mol of a dilute monatomic gas; (b) 0.50 mol of a dilute diatomic gas; and (c) 15 mol of a dilute polyatomic gas?arrow_forwardIn 1993, the U.S. government instituted a requirement that all room air conditioners sold in the United States must have an energy efficiency ratio (EER) of 10 or higher. The EER is defined as the ratio of the cooling capacity of the air conditioner, measured in British thermal units per hour, or Btu/h, to its electrical power requirement in watts. (a) Convert the EER of 10.0 to dimensionless form, using the conversion 1 Btu = 1 055 J. (b) What is the appropriate name for this dimensionless quantity? (c) In the 1970s, it was common to find room air conditioners with EERs of 5 or lower. State how the operating costs compare for 10 000-Btu/h air conditioners with EERs of 5.00 and 10.0. Assume each air conditioner operates for 1 500 h during the summer in a city where electricity costs 17.0 per kWh.arrow_forward
- An aluminum rod 0.500 m in length and with a cross-sectional area of 2.50 cm2 is inserted into a thermally insulated vessel containing liquid helium at 4.20 K. The rod is initially at 300 K. (a) If one-half of the rod is inserted into the helium, how many liters of helium boil off by the time the inserted half cools to 4.20 K? Assume the upper half does not yet cool. (b) If the circular surface of the upper end of the rod is maintained at 300 K, what is the approximate boil-off rate of liquid helium in liters per second after the lower half has reached 4.20 K? (Aluminum has thermal conductivity of 3 100 W/m K at 4.20 K; ignore its temperature variation. The density of liquid helium is 125 kg/m3.)arrow_forwardOn his honeymoon, James Joule traveled from England to Switzerland. He attempted to verify his idea of the inter-convertibility of mechanical energy and internal energy by measuring the increase in temperature of water that fell in a waterfall. For the waterfall near Chamonix in the French Alps, which has a 120-m drop, what maximum temperature rise could Joule expect? He did not succeed in measuring it, partly because evaporation cooled the falling water and also because his thermometer was not sufficiently sensitive.arrow_forwardThe world's most active volcanoes, such as the Kilauea volcano in Hawaii, can disgorge about 5.00 X 105 m3 of 1100°C lava per day. What is the rate of heat transfer (in MW) out of the earth by convection, if this lava has a density of 2800 kg/m3 and eventually cools to 25°C? Assume that the specific heat of lava is the same as that of granite.arrow_forward
- Hydrothermal vents deep on the ocean floor spout water at temperatures as high as 570°C. This temperature is below the boiling point of water because of the immense pressure at that depth. Because the surrounding ocean temperature is at 4.0°C, an organism could use the temperature gradient as a source of energy. (a) Assuming the specific heat of water under these conditions is 1.0 cal/g ? °C, how much energy is released when 1.0 liter of water is cooled from 570°C to 4.0°C? (b) What is the maximum usable energy an organism can extract from this energy source? (Assume the organism has some internal type of heat engine acting between the two temperature extremes.) (c) Water from these vents contains hydrogen sulfide (H2 S) at a concentration of 0.90 mmole/liter. Oxidation of 1.0 mole of H2 S produces 310 kJ of energy. How much energy is available through H2 S oxidation of 1.0 L of water?arrow_forwardA thermally insulated vessel contains 150 g of water at 0°C. Then, the air from the vessel is pumped out adiabatically. A fraction of water turns into ice and the rest evaporates at 0°C itself. The mass of evaporated water will be closest to (Latent heat of vaporisation of water = 2.10×106 Jkg-¹ and latent heat of fusion of water = 3.36x10³Jkg-¹)arrow_forwardSolar energy is used for air conditioning a house. To maintain a pressurized water tank at 443 K solar radiation is allowed. At a particular time interval, 301kJ of heat is extracted from the house to maintain its temperature at 301K when the surroundings temperature is 310K. Consider the tank of water, the house and the surroundings as heat reservoirs, what is the minimum heat (in kJ ,2 decimal places) that must be extracted from the tank of water by any device built to accomplish the required cooling of the house. No other sources of energy are available.arrow_forward
- A pronghorn antelope can run at a remarkable 18 m/sm/s for up to 10 minutes, almost triple the speed that an elite human runner can maintain. For a 32 kgkg pronghorn, this requires an astonishing 3.4 kWkW of metabolic power, which leads to a significant increase in body temperature. If the pronghorn had no way to exhaust heat to the environment, by how much would its body temperature increase during this run? (In fact, it will lose some heat, so the rise won't be this dramatic, but it will be quite noticeable, requiring adaptations that keep the pronghorn's brain cooler than its body in such circumstances.) Assume the efficiency of the pronghorn to be equal to that of human.arrow_forwardThe maximum amount of water an adult in temperate climates can perspire in one hour is typically 1.8 L. However, after several weeks in a tropical climate the body can adapt, increasing the maximum perspiration rate to 3.5 L/h. At what rate, in watts, is energy being removed when perspiring that rapidly?Assume all of the perspired water evaporates. At body temperature, the heat of vaporization of water is Lv = 24 × 105 J/kg.arrow_forwardA 75 kg person cannot go out for a long time due to Covid-19 restrictions. That's why he rides a bike at home to keep his weight stable. During bicycling, his body produces energy at a rate of about 450 W due to metabolism, 80% of which is converted to heat. The person's body gets rid of all this heat by evaporating water (sweat). How many grams of water must the person's body evaporate in an hour? The heat of vaporization of water at body temperature is 2.42 x 10^6 J/kg. 136. pekfor speiotoris 235 g 535 g 135 g 435 g 335 garrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning