
World of Chemistry, 3rd edition
3rd Edition
ISBN: 9781133109655
Author: Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher: Brooks / Cole / Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 3A
Interpretation Introduction
Interpretation: The meaning double bond with examples and draw the Lewis structure of those molecules is to be determined.
Concept introduction: A multiple bond is formed when the atoms forming the bond share more than two electrons.
Expert Solution & Answer

Answer to Problem 3A
Double bond involves sharing two pairs of electrons.
Explanation of Solution
Carbon can bond to fewer than four elements by forming one or more multiple bonds. Recall that a multiple bond involves the sharing of more than two electrons. For example, a double bond is formed when atoms forming the bond shares four electrons.
Examples of double bond molecules are:
Molecules | Structure | Lewis dot structure | |
1 | Carbon dioxide, | ||
2 | Ethylene, |
Conclusion
Lewis dot structure help in visualizing the valence electrons of atoms.
Chapter 20 Solutions
World of Chemistry, 3rd edition
Ch. 20.1 - Prob. 1RQCh. 20.1 - Prob. 2RQCh. 20.1 - Prob. 3RQCh. 20.1 - Prob. 4RQCh. 20.1 - Prob. 5RQCh. 20.1 - Prob. 6RQCh. 20.1 - Prob. 7RQCh. 20.1 - Prob. 8RQCh. 20.2 - Prob. 1RQCh. 20.2 - Prob. 2RQ
Ch. 20.2 - Prob. 3RQCh. 20.2 - Prob. 4RQCh. 20.2 - Prob. 5RQCh. 20.2 - Prob. 6RQCh. 20.3 - Prob. 1RQCh. 20.3 - Prob. 2RQCh. 20.3 - Prob. 3RQCh. 20.3 - Prob. 4RQCh. 20.3 - Prob. 5RQCh. 20.4 - Prob. 1RQCh. 20.4 - Prob. 2RQCh. 20.4 - Prob. 3RQCh. 20.4 - Prob. 4RQCh. 20.4 - Prob. 5RQCh. 20 - Prob. 1ACh. 20 - Prob. 2ACh. 20 - Prob. 3ACh. 20 - Prob. 4ACh. 20 - Prob. 5ACh. 20 - Prob. 6ACh. 20 - Prob. 7ACh. 20 - Prob. 8ACh. 20 - Prob. 9ACh. 20 - Prob. 10ACh. 20 - Prob. 11ACh. 20 - Prob. 12ACh. 20 - Prob. 13ACh. 20 - Prob. 14ACh. 20 - Prob. 15ACh. 20 - Prob. 16ACh. 20 - Prob. 17ACh. 20 - Prob. 18ACh. 20 - Prob. 19ACh. 20 - Prob. 20ACh. 20 - Prob. 21ACh. 20 - Prob. 22ACh. 20 - Prob. 23ACh. 20 - Prob. 24ACh. 20 - Prob. 25ACh. 20 - Prob. 26ACh. 20 - Prob. 27ACh. 20 - Prob. 28ACh. 20 - Prob. 29ACh. 20 - Prob. 30ACh. 20 - Prob. 31ACh. 20 - Prob. 32ACh. 20 - Prob. 33ACh. 20 - Prob. 34ACh. 20 - Prob. 35ACh. 20 - Prob. 36ACh. 20 - Prob. 37ACh. 20 - Prob. 38ACh. 20 - Prob. 39ACh. 20 - Prob. 40ACh. 20 - Prob. 41ACh. 20 - Prob. 42ACh. 20 - Prob. 43ACh. 20 - Prob. 44ACh. 20 - Prob. 45ACh. 20 - Prob. 46ACh. 20 - Prob. 47ACh. 20 - Prob. 48ACh. 20 - Prob. 49ACh. 20 - Prob. 50ACh. 20 - Prob. 51ACh. 20 - Prob. 52ACh. 20 - Prob. 53ACh. 20 - Prob. 54ACh. 20 - Prob. 55ACh. 20 - Prob. 56ACh. 20 - Prob. 57ACh. 20 - Prob. 58ACh. 20 - Prob. 59ACh. 20 - Prob. 60ACh. 20 - Prob. 61ACh. 20 - Prob. 62ACh. 20 - Prob. 63ACh. 20 - Prob. 64ACh. 20 - Prob. 65ACh. 20 - Prob. 66ACh. 20 - Prob. 67ACh. 20 - Prob. 68ACh. 20 - Prob. 69ACh. 20 - Prob. 70ACh. 20 - Prob. 71ACh. 20 - Prob. 72ACh. 20 - Prob. 73ACh. 20 - Prob. 1STPCh. 20 - Prob. 2STPCh. 20 - Prob. 3STPCh. 20 - Prob. 4STPCh. 20 - Prob. 5STPCh. 20 - Prob. 6STPCh. 20 - Prob. 7STPCh. 20 - Prob. 8STPCh. 20 - Prob. 9STP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Using the Nernst equation to calculate nonstandard cell voltage A galvanic cell at a temperature of 25.0 °C is powered by the following redox reaction: MnO2 (s)+4H* (aq)+2Cr²+ (aq) → Mn²+ (aq)+2H₂O (1)+2Cr³+ (aq) + 2+ 2+ 3+ Suppose the cell is prepared with 7.44 M H* and 0.485 M Cr²+ in one half-cell and 7.92 M Mn² and 3.73 M Cr³+ in the other. Calculate the cell voltage under these conditions. Round your answer to 3 significant digits. ☐ x10 μ Х 5 ? 000 日。arrow_forwardCalculating standard reaction free energy from standard reduction... Using standard reduction potentials from the ALEKS Data tab, calculate the standard reaction free energy AG° for the following redox reaction. Be sure your answer has the correct number of significant digits. NO (g) +H₂O (1) + Cu²+ (aq) → HNO₂ (aq) +H* (aq)+Cu* (aq) kJ - ☐ x10 x10 olo 18 Ararrow_forwardCalculating the pH of a weak base titrated with a strong acid b An analytical chemist is titrating 116.9 mL of a 0.7700M solution of aniline (C6H5NH2) with a 0.5300M solution of HNO3. The pK of aniline is 9.37. Calculate the pH of the base solution after the chemist has added 184.2 mL of the HNO 3 solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of HNO3 solution added. Round your answer to 2 decimal places. pH = ☐ ☑ 5arrow_forward
- QUESTION: Find the standard deviation for the 4 different groups 5.298 3.977 223.4 148.7 5.38 4.24 353.7 278.2 5.033 4.044 334.6 268.7 4.706 3.621 305.6 234.4 4.816 3.728 340.0 262.7 4.828 4.496 304.3 283.2 4.993 3.865 244.7 143.6 STDEV = STDEV = STDEV = STDEV =arrow_forwardQUESTION: Fill in the answers in the empty green boxes regarding 'Question 5: Calculating standard error of regression' *The images of the data showing 'coefficients for the standard curve' have been providedarrow_forwardUsing the Nernst equation to calculate nonstandard cell voltage Try Again Your answer is wrong. In addition to checking your math, check that you used the right data and DID NOT round any intermediate calculations. A galvanic cell at a temperature of 25.0 °C is powered by the following redox reaction: 2+ 2+ Sn²+ Ba(s) (aq) + Ba (s) Sn (s) + Ba²+ (aq) →>> Suppose the cell is prepared with 6.10 M Sn 2+ 2+ in one half-cell and 6.62 M Ba in the other. Calculate the cell voltage under these conditions. Round your answer to 3 significant digits. 1.71 V ☐ x10 ☑ 5 0/5 ? 00. 18 Ararrow_forward
- Question: Find both the b (gradient) and a (y-intercept) value from the list of data below: (x1 -x̄) 370.5 (y1 - ȳ) 5.240 (x2 - x̄) 142.5 (y2 - ȳ) 2.004 (x3 - x̄) 28.5 (y3 - ȳ) 0.390 (x4 - x̄) -85.5 (y4 - ȳ) -1.231 (x5 - x̄) -199.5 (y5 - ȳ) -2.829 (x6 - x̄) -256.5 (y6 - ȳ) -3.575arrow_forwardCalculating standard reaction free energy from standard reduction... Using standard reduction potentials from the ALEKS Data tab, calculate the standard reaction free energy AG° for the following redox reaction. Be sure your answer has the correct number of significant digits. 3Cu+ (aq) + Cro²¯ (aq) +4H₂O (1) → 3Cu²+ (aq) +Cr(OH)3 (s)+5OH˜¯ (aq) 0 kJ ☐ x10 00. 18 Ararrow_forwardCalculating the pH of a weak base titrated with a strong acid An analytical chemist is titrating 241.7 mL of a 0.4900M solution of methylamine (CH3NH2) with a 0.7800M solution of HNO3. The pK of methylamine is 3.36. Calculate the pH of the base solution after the chemist has added 17.7 mL of the HNO3 solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of HNO3 solution added. Round your answer to 2 decimal places. pH = ☑ ? 18 Ararrow_forward
- The following is two groups (Regular tomato sauce & Salt Reduced Tomato Sauce) of data recorded by a team analysising salt content in tomato sauce using the MOHR titration method: Regular Tomato Sauce Salt Reduced Tomato Sauce 223.4 148.7 353.7 278.2 334.6 268.7 305.6 234.4 340.0 262.7 304.3 283.2 244.7 143.6 QUESTION: For both groups of data calculate the answers attached in the image.arrow_forwardThe following is a two groups (Regular tomato sauce & Salt Reduced Tomato Sauce) of data recorded by a team analysising salt content in tomato sauce using the MOHR titration method: Regular Tomato Sauce Salt Reduced Tomato Sauce 340.0mmol/L 262.7mmol/L QUESTION: For both groups (Regular & Salt Reduced tomato sauce) of data provide answers to the following calculations below: 1. Standard Deviation (Sx) 2. T Values (t0.05,4) 3. 95% Confidence Interval (mmol/L) 4. [Na+] (mg/100 mL) 5. 95% Confidence Interval (mg/100 mL)arrow_forwardIf we have leucine (2-amino-4-methylpentanoic acid), alanine (2-aminopropanoic acid) and phenylalanine (2-amino-3-phenylpropanoic acid), indicate the tripeptides that can be formed (use the abbreviated symbols Leu., Ala and Phe).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY