EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 9780100793439
Author: KALPAKJIAN
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 53QTP
Identify the two materials in Fig. 2.5 that have the lowest and the highest uniform elongations. Calculate these quantities as percentages of the original gage lengths.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 3-mm-long gold alloy wire intended to electricallybond a computer chip to its package has an initial diameter of30 μm. During testing, it is pulled axially with a load of 15grams-force. If the wire diameter decreases uniformly to29 μm, compute the following:a. The final length of the wire.b. The true stress and true strain at this load.c. The engineering stress and strain at this load.
3. An aluminum sample was tensile tested with a force of 35,500 N. The sample has a
rectangular cross section with dimension 10 mm x 12.7 mm. It was observed that only
elastic deformation occurred. If the modulus of elasticity of Al is 69 GPa, calculate the
resulting strain.
For the curve shown below, calculate the energy required to destroy the
specimen. Use any method but your solution must include one integration step at least.
Chapter 2 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 2 - Distinguish between engineering stress and true...Ch. 2 - In a stress-strain curve, what is the proportional...Ch. 2 - Describe the events that take place when a...Ch. 2 - What is ductility, and how is it measured?Ch. 2 - In the equation =Kn, which represents the true...Ch. 2 - What is strain-rate sensitivity, and how is it...Ch. 2 - What test can measure the properties of a material...Ch. 2 - What testing procedures can be used to measure the...Ch. 2 - Describe the differences between brittle and...Ch. 2 - What is hardness? Explain.
Ch. 2 - Describe the features of a Rockwell hardness test.Ch. 2 - What is a Leeb test? How is it different from a...Ch. 2 - Differentiate between stress relaxation and creep.Ch. 2 - Describe the difference between elastic and...Ch. 2 - Explain what uniform elongation means in tension...Ch. 2 - Describe the difference between deformation rate...Ch. 2 - Describe the difficulties involved in conducting a...Ch. 2 - What is Hookes law? Youngs modulus? Poissons...Ch. 2 - Describe the difference between transgranular and...Ch. 2 - What is the reason that yield strength is...Ch. 2 - Why does the fatigue strength of a specimen or...Ch. 2 - If striations are observed under microscopic...Ch. 2 - What is an Izod test? Why are Izod tests useful?Ch. 2 - Why does temperature increase during plastic...Ch. 2 - What is residual stress? How can residual stresses...Ch. 2 - On the same scale for stress, the tensile true...Ch. 2 - What are the similarities and differences between...Ch. 2 - Can a material have a negative Poissons ratio?...Ch. 2 - It has been stated that the higher the value of m,...Ch. 2 - Explain why materials with high m values, such as...Ch. 2 - With a simple sketch, explain whether it is...Ch. 2 - Explain why the difference between engineering...Ch. 2 - Consider an elastomer, such as a rubber band. This...Ch. 2 - If a material (such as aluminum) does not have an...Ch. 2 - What role, if any, does friction play in a...Ch. 2 - Which hardness tests and scales would you use for...Ch. 2 - Consider the circumstance where a Vickers hardness...Ch. 2 - Which of the two tests, tension or compression,...Ch. 2 - List and explain briefly the conditions that...Ch. 2 - List the factors that you would consider in...Ch. 2 - On the basis of Fig. 2.5, can you calculate the...Ch. 2 - If a metal tension-test specimen is rapidly pulled...Ch. 2 - Comment on your observations regarding the...Ch. 2 - Will the disk test be applicable to a ductile...Ch. 2 - What hardness test is suitable for determining the...Ch. 2 - Wire rope consists of many wires that bend and...Ch. 2 - A statistical sampling of Rockwell C hardness...Ch. 2 - In a Brinell hardness test, the resulting...Ch. 2 - Some coatings are extremely thinsome as thin as a...Ch. 2 - Select an appropriate hardness test for each of...Ch. 2 - A paper clip is made of wire 0.5 mm in diameter....Ch. 2 - A 250-mm-long strip of metal is stretched in two...Ch. 2 - Identify the two materials in Fig. 2.5 that have...Ch. 2 - Plot the ultimate strength vs. stiffness for the...Ch. 2 - If you remove the layer of material ad from the...Ch. 2 - Prove that the true strain at necking equals the...Ch. 2 - Percent elongation is always defined in terms of...Ch. 2 - You are given the K and n values of two different...Ch. 2 - A cable is made of two strands of different...Ch. 2 - On the basis of the information given in Fig. 2.5,...Ch. 2 - In a disk test performed on a specimen 1.00 in. in...Ch. 2 - A piece of steel has a hardness of 300 HB....Ch. 2 - A metal has the following properties: UTS = 70,000...Ch. 2 - Using only Fig. 2.5, calculate the maximum load in...Ch. 2 - Estimate the modulus of resilience for a highly...Ch. 2 - A metal has a strength coefficient K = 100,000 psi...Ch. 2 - Plot the true stresstrue strain curves for the...Ch. 2 - The design specification for a metal requires a...Ch. 2 - Calculate the major and minor pyramid angles for a...Ch. 2 - If a material has a target hardness of 300 HB,...Ch. 2 - A Rockwell A test was conducted on a material and...Ch. 2 - For a cold-drawn 0.5% carbon steel, will a...Ch. 2 - A material is tested in tension. Over a 1-in. gage...Ch. 2 - A horizontal rigid bar cc is subjecting specimen a...Ch. 2 - List and explain the desirable mechanical...Ch. 2 - When making a hamburger, you may have observed the...Ch. 2 - An inexpensive claylike material called Silly...Ch. 2 - In tension testing of specimens, mechanical and...Ch. 2 - Demonstrate the impact toughness of a piece of...Ch. 2 - Using a large rubber band and a set of weights,...Ch. 2 - Find or prepare some solid circular pieces of...Ch. 2 - Take several rubber bands and pull them at...Ch. 2 - Devise a simple fixture for conducting the bend...Ch. 2 - By pressing a small ball bearing against the top...Ch. 2 - Describe your observations regarding Fig. 2.14c.Ch. 2 - Embed a small steel ball in a soft block of...Ch. 2 - Devise a simple experiment, and perform tests on...Ch. 2 - Obtain some solid and some tubular metal pieces,...Ch. 2 - Explain how you would obtain an estimate of the...Ch. 2 - Without using the words stress or strain, define...Ch. 2 - We know that it is relatively easy to subject a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2. Consider a cylindrical nickel wire 0.08 in. in diameter and 1200 in. long. Calculate its elongation when a load of 300 N is applied. Assume that the deformation is totally elastic.arrow_forwardA piece of Aluminum originally 213 mm long is pulled in tension with a stress of 844 MPa. If the deformation is entirely elastic, what will be the resultant elongation in mm? The modulus of elasticity of aluminum is 69 GPa. Round your answer to 2 significant figures.arrow_forward. From the tensile stress-strain behaviour for a casted iron as shown in the following curve. Please answer the following questions (1) Estimate the modulus of elasticity, (2) Calculate the change in length of a specimen with original length of 100mm that is subjected to a tensile stress of 300MPa. (Hint: Using the Hooke's law to get the strain.) 600 500 400 - 300 - 200 - 100 - 2 4 6. 8 10 12 14 16 Strain Strength (MPa)arrow_forward
- I need the answer as soon as possiblearrow_forwardA cylindrical specimen of a nickel alloy having an elastic modulus of 207 GPa and an original diameter of 10.2 mm will experience only elastic deformation when a tensile load of 8900 N is applied. Compute the maximum length of the specimen before deformation if the maximum allowable elongation is 0.25mm.arrow_forwardSuppose a long bone is idealized as a solid cylinder with a diameter of 0.03 m. During a torsion test, if the torsion moment is 10N.m, what is the maximal stress caused by torsion? (Hint: polar moment of inertia of the cross-sectional area is equal to π r4/2 , π = 3.14, r is the radius).arrow_forward
- A square specimen of is loaded using a three-point bend test. The load during the test is 419.6 N while the separation between the load points is 53.1mm. The flexural strength of MgO is equal to 103.4MPa . Compute the minimum possible thickness the specimen should have to avoid fractures during the bend test. Round your answer to three significant figures.arrow_forwardA 3-mm-long gold alloy wire intended to electrically bond a computer chip to its package has an initial diameter of 30 µm. During testing, it is pulled axially with a load of 15 grams-force. If the wire diameter decreases uniformly to 29 µm, compute the following: (a) The final length of the wire. (b) The true stress and true strain at this load. (c) The engineering stress and strain at this load.arrow_forward2.) An S-five ninety alloy specimen nine hundred mm long will be subjected to eighty MPa tensile stress at eight hundred and fifteen degrees celcius. Later after five thousand of hours, compute its elongation. Consider a sum of one point five mm in the both immediate and main creep elongations.arrow_forward
- A cylindrical specimen of a nickel alloy having an elastic modulus of 207 GPa and an original diameter of 10.2 mm will experience only elastic deformation when a tensile load of 8900 N is applied. Compute the maximum length of the specimen before deformation if the maximum allowable elongation is 0.25 mm.arrow_forwardForces is appliedarrow_forwardI need the answer as soon as possiblearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY