EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 9780100793439
Author: KALPAKJIAN
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 41QLP
On the basis of Fig. 2.5, can you calculate the percent elongation of the materials listed? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
It is known that a brass alloy has a yield strength of 275 MPa, a tensile strength of 380 MPa and a modulus of elasticity of 103 GPa. It is determined that a 12.7 mm diameter and 250 mm long cylindrical sample made of this alloy is elongated by 7.6 mm under the tensile stress effect. Based on this information, is it possible to calculate the magnitude of the load required to generate the said elongation? If possible, calculate, if not, explain why.
1. In your own understanding, explain what stress concentration is? How can they affect the strength of
materials?
Stress can be related to strain. Explain by using experimental methods?
Chapter 2 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 2 - Distinguish between engineering stress and true...Ch. 2 - In a stress-strain curve, what is the proportional...Ch. 2 - Describe the events that take place when a...Ch. 2 - What is ductility, and how is it measured?Ch. 2 - In the equation =Kn, which represents the true...Ch. 2 - What is strain-rate sensitivity, and how is it...Ch. 2 - What test can measure the properties of a material...Ch. 2 - What testing procedures can be used to measure the...Ch. 2 - Describe the differences between brittle and...Ch. 2 - What is hardness? Explain.
Ch. 2 - Describe the features of a Rockwell hardness test.Ch. 2 - What is a Leeb test? How is it different from a...Ch. 2 - Differentiate between stress relaxation and creep.Ch. 2 - Describe the difference between elastic and...Ch. 2 - Explain what uniform elongation means in tension...Ch. 2 - Describe the difference between deformation rate...Ch. 2 - Describe the difficulties involved in conducting a...Ch. 2 - What is Hookes law? Youngs modulus? Poissons...Ch. 2 - Describe the difference between transgranular and...Ch. 2 - What is the reason that yield strength is...Ch. 2 - Why does the fatigue strength of a specimen or...Ch. 2 - If striations are observed under microscopic...Ch. 2 - What is an Izod test? Why are Izod tests useful?Ch. 2 - Why does temperature increase during plastic...Ch. 2 - What is residual stress? How can residual stresses...Ch. 2 - On the same scale for stress, the tensile true...Ch. 2 - What are the similarities and differences between...Ch. 2 - Can a material have a negative Poissons ratio?...Ch. 2 - It has been stated that the higher the value of m,...Ch. 2 - Explain why materials with high m values, such as...Ch. 2 - With a simple sketch, explain whether it is...Ch. 2 - Explain why the difference between engineering...Ch. 2 - Consider an elastomer, such as a rubber band. This...Ch. 2 - If a material (such as aluminum) does not have an...Ch. 2 - What role, if any, does friction play in a...Ch. 2 - Which hardness tests and scales would you use for...Ch. 2 - Consider the circumstance where a Vickers hardness...Ch. 2 - Which of the two tests, tension or compression,...Ch. 2 - List and explain briefly the conditions that...Ch. 2 - List the factors that you would consider in...Ch. 2 - On the basis of Fig. 2.5, can you calculate the...Ch. 2 - If a metal tension-test specimen is rapidly pulled...Ch. 2 - Comment on your observations regarding the...Ch. 2 - Will the disk test be applicable to a ductile...Ch. 2 - What hardness test is suitable for determining the...Ch. 2 - Wire rope consists of many wires that bend and...Ch. 2 - A statistical sampling of Rockwell C hardness...Ch. 2 - In a Brinell hardness test, the resulting...Ch. 2 - Some coatings are extremely thinsome as thin as a...Ch. 2 - Select an appropriate hardness test for each of...Ch. 2 - A paper clip is made of wire 0.5 mm in diameter....Ch. 2 - A 250-mm-long strip of metal is stretched in two...Ch. 2 - Identify the two materials in Fig. 2.5 that have...Ch. 2 - Plot the ultimate strength vs. stiffness for the...Ch. 2 - If you remove the layer of material ad from the...Ch. 2 - Prove that the true strain at necking equals the...Ch. 2 - Percent elongation is always defined in terms of...Ch. 2 - You are given the K and n values of two different...Ch. 2 - A cable is made of two strands of different...Ch. 2 - On the basis of the information given in Fig. 2.5,...Ch. 2 - In a disk test performed on a specimen 1.00 in. in...Ch. 2 - A piece of steel has a hardness of 300 HB....Ch. 2 - A metal has the following properties: UTS = 70,000...Ch. 2 - Using only Fig. 2.5, calculate the maximum load in...Ch. 2 - Estimate the modulus of resilience for a highly...Ch. 2 - A metal has a strength coefficient K = 100,000 psi...Ch. 2 - Plot the true stresstrue strain curves for the...Ch. 2 - The design specification for a metal requires a...Ch. 2 - Calculate the major and minor pyramid angles for a...Ch. 2 - If a material has a target hardness of 300 HB,...Ch. 2 - A Rockwell A test was conducted on a material and...Ch. 2 - For a cold-drawn 0.5% carbon steel, will a...Ch. 2 - A material is tested in tension. Over a 1-in. gage...Ch. 2 - A horizontal rigid bar cc is subjecting specimen a...Ch. 2 - List and explain the desirable mechanical...Ch. 2 - When making a hamburger, you may have observed the...Ch. 2 - An inexpensive claylike material called Silly...Ch. 2 - In tension testing of specimens, mechanical and...Ch. 2 - Demonstrate the impact toughness of a piece of...Ch. 2 - Using a large rubber band and a set of weights,...Ch. 2 - Find or prepare some solid circular pieces of...Ch. 2 - Take several rubber bands and pull them at...Ch. 2 - Devise a simple fixture for conducting the bend...Ch. 2 - By pressing a small ball bearing against the top...Ch. 2 - Describe your observations regarding Fig. 2.14c.Ch. 2 - Embed a small steel ball in a soft block of...Ch. 2 - Devise a simple experiment, and perform tests on...Ch. 2 - Obtain some solid and some tubular metal pieces,...Ch. 2 - Explain how you would obtain an estimate of the...Ch. 2 - Without using the words stress or strain, define...Ch. 2 - We know that it is relatively easy to subject a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- answer quicklyarrow_forwardA 30 cm long, 12 mm diameter carbon steel rod was subjected to 15.5 kN of tension. Calculate: (a) the stress and strain in the rod (b) the amount that it stretches, (c) its change in diameter and its stiffness (k= EA/L), (d) If the force was only 4.5 kN, by what amount would the rod have stretched?arrow_forwardDraw two schematic graphs using pencil showing a typical stress-strain curve for aluminum. The first graph should show engineering stress vs engineering strain, and the second graph should show true stress vs true strain. Label the showing: (i) elastic modulus (ii) proportional limit (iii) yield stress (iv)yield strain (v) fracture stress (vi) fracture strain on each graph. You may showboth graphs on one plot. Explain the difference between engineering stress and true stress.arrow_forward
- A steel rod is subjected to a force of 5 kN. The initial length of the rod is 690 mm and after elongation its length is equal to 700 mm. Estimate engineering and true strain.arrow_forwardWith a suitable example explain the difference between True stress-strain and Engineering stress- strain.arrow_forwardwhy use yield strength not tensile strength? You are drawing wire which you want the wire to elongate pernamently, and not return back to original shape .arrow_forward
- A material has a strength coefficient of 150,000 psi. At the onset of plastic deformation, the material had an 18 percent increase over its initial length, and at the beginning of non-uniform deformation, the material experienced an engineering strain of 0.58. Calculate the engineering and true strains at yield. Also, calculate the engineering and true strains at the point where a maximum engineering stress is experienced by the material. Determine the strain-hardening index. Calculate the ultimate tensile strength. Calculate the modulus of elasticity. Given: K = 150,000 psi 18% increase in length ey = 0.58 Want: ey =? eu =? n =? UTS =? E =? εy =? εu =?arrow_forwardExplain what the meaning of strain hardening is, how it happens in the materials. Do you think strain hardening is useful? Explain your answerarrow_forwardA 20 foot long x 4 feet wide x ½ inch thick sheet of an aluminum alloy is cold rolled to a thickness of ¼ inch. During the rolling operation the with of the sheet increases by 10%. The strength coefficient (K) and the strain hardening coefficient (n ) for the aluminum alloy are 25,500 psi and 0.3, respectively Calculate the true strain at the end of the rolling process.arrow_forward
- A sheet of aluminium alloy is reduced in thickness by 25% following a rolling operation. Tensile test specimens were cut from the sheet before and after rolling. Sketch the tensile test curves for both specimens, making reference to the differences if any, in Young’s modulus, the elastic limit and the level of ductilityarrow_forward5b.You used a material to design a system. The more you apply external force, the more the system becomes rigid. Use a sketch to explain how the material is disobeying the stress and strain characteristics. Give two(2) examples.arrow_forwardWhen a 3000 kg load is applied to a 10-mm-diameter ball in a Brinell test of a steel,an indentation of 3.1 mm diameter is produced.Estimate the tensile strength of the steel?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY