EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 9780100793439
Author: KALPAKJIAN
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 37QLP
Consider the circumstance where a Vickers hardness test is conducted on a material. Sketch the resulting indentation shape if there is a residual stress on the surface.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 3-mm-long gold alloy wire intended to electricallybond a computer chip to its package has an initial diameter of30 μm. During testing, it is pulled axially with a load of 15grams-force. If the wire diameter decreases uniformly to29 μm, compute the following:a. The final length of the wire.b. The true stress and true strain at this load.c. The engineering stress and strain at this load.
The data shown in the table below were obtained from a tensile test of high-strength steel. The test specimen had a diameter of 13mm and a gage length of 50mm. At fracture, the elongation between the gage marks was 3.0mm and the minimum diameter was 10.7mm.
Plot the conventional stress-strain curve for the steel and determine the propotional limit, modulus of elasticity (i.e the slope of the initial part of the stress-strain curve), yield stress at 0.1% offset, ultimate stress, percent elongation in 50mm, and percent reduction area.
TENSILE-TEST DATA
Load(kN)
Elongation(mm)
5
0.005
10
0.015
30
0.048
50
0.084
60
0.099
64.5
0.109
67.0
0.119
68.0
0.137
69.0
0.160
70.0
0.229
72.0
0.259
76.0
0.330
84.0
0.584
92.0
0.853
100.0
1.288
112.0
2.814
113.0
Fracture
A metallic rod with an initial diameter of 10 mm and an initial length of 50 mm is subjected to the tensile test. After the fracture, the final length was measured as 51.8 mm, and the final diameter was measured as 9.5 mm.(a) Calculate modulus of elasticity, ultimate tensile strength, elongation at fracture in %,reduction of area in %, true stress at maximum load, true strain at maximum load, strain hardening exponent, strength coefficient.?
Chapter 2 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 2 - Distinguish between engineering stress and true...Ch. 2 - In a stress-strain curve, what is the proportional...Ch. 2 - Describe the events that take place when a...Ch. 2 - What is ductility, and how is it measured?Ch. 2 - In the equation =Kn, which represents the true...Ch. 2 - What is strain-rate sensitivity, and how is it...Ch. 2 - What test can measure the properties of a material...Ch. 2 - What testing procedures can be used to measure the...Ch. 2 - Describe the differences between brittle and...Ch. 2 - What is hardness? Explain.
Ch. 2 - Describe the features of a Rockwell hardness test.Ch. 2 - What is a Leeb test? How is it different from a...Ch. 2 - Differentiate between stress relaxation and creep.Ch. 2 - Describe the difference between elastic and...Ch. 2 - Explain what uniform elongation means in tension...Ch. 2 - Describe the difference between deformation rate...Ch. 2 - Describe the difficulties involved in conducting a...Ch. 2 - What is Hookes law? Youngs modulus? Poissons...Ch. 2 - Describe the difference between transgranular and...Ch. 2 - What is the reason that yield strength is...Ch. 2 - Why does the fatigue strength of a specimen or...Ch. 2 - If striations are observed under microscopic...Ch. 2 - What is an Izod test? Why are Izod tests useful?Ch. 2 - Why does temperature increase during plastic...Ch. 2 - What is residual stress? How can residual stresses...Ch. 2 - On the same scale for stress, the tensile true...Ch. 2 - What are the similarities and differences between...Ch. 2 - Can a material have a negative Poissons ratio?...Ch. 2 - It has been stated that the higher the value of m,...Ch. 2 - Explain why materials with high m values, such as...Ch. 2 - With a simple sketch, explain whether it is...Ch. 2 - Explain why the difference between engineering...Ch. 2 - Consider an elastomer, such as a rubber band. This...Ch. 2 - If a material (such as aluminum) does not have an...Ch. 2 - What role, if any, does friction play in a...Ch. 2 - Which hardness tests and scales would you use for...Ch. 2 - Consider the circumstance where a Vickers hardness...Ch. 2 - Which of the two tests, tension or compression,...Ch. 2 - List and explain briefly the conditions that...Ch. 2 - List the factors that you would consider in...Ch. 2 - On the basis of Fig. 2.5, can you calculate the...Ch. 2 - If a metal tension-test specimen is rapidly pulled...Ch. 2 - Comment on your observations regarding the...Ch. 2 - Will the disk test be applicable to a ductile...Ch. 2 - What hardness test is suitable for determining the...Ch. 2 - Wire rope consists of many wires that bend and...Ch. 2 - A statistical sampling of Rockwell C hardness...Ch. 2 - In a Brinell hardness test, the resulting...Ch. 2 - Some coatings are extremely thinsome as thin as a...Ch. 2 - Select an appropriate hardness test for each of...Ch. 2 - A paper clip is made of wire 0.5 mm in diameter....Ch. 2 - A 250-mm-long strip of metal is stretched in two...Ch. 2 - Identify the two materials in Fig. 2.5 that have...Ch. 2 - Plot the ultimate strength vs. stiffness for the...Ch. 2 - If you remove the layer of material ad from the...Ch. 2 - Prove that the true strain at necking equals the...Ch. 2 - Percent elongation is always defined in terms of...Ch. 2 - You are given the K and n values of two different...Ch. 2 - A cable is made of two strands of different...Ch. 2 - On the basis of the information given in Fig. 2.5,...Ch. 2 - In a disk test performed on a specimen 1.00 in. in...Ch. 2 - A piece of steel has a hardness of 300 HB....Ch. 2 - A metal has the following properties: UTS = 70,000...Ch. 2 - Using only Fig. 2.5, calculate the maximum load in...Ch. 2 - Estimate the modulus of resilience for a highly...Ch. 2 - A metal has a strength coefficient K = 100,000 psi...Ch. 2 - Plot the true stresstrue strain curves for the...Ch. 2 - The design specification for a metal requires a...Ch. 2 - Calculate the major and minor pyramid angles for a...Ch. 2 - If a material has a target hardness of 300 HB,...Ch. 2 - A Rockwell A test was conducted on a material and...Ch. 2 - For a cold-drawn 0.5% carbon steel, will a...Ch. 2 - A material is tested in tension. Over a 1-in. gage...Ch. 2 - A horizontal rigid bar cc is subjecting specimen a...Ch. 2 - List and explain the desirable mechanical...Ch. 2 - When making a hamburger, you may have observed the...Ch. 2 - An inexpensive claylike material called Silly...Ch. 2 - In tension testing of specimens, mechanical and...Ch. 2 - Demonstrate the impact toughness of a piece of...Ch. 2 - Using a large rubber band and a set of weights,...Ch. 2 - Find or prepare some solid circular pieces of...Ch. 2 - Take several rubber bands and pull them at...Ch. 2 - Devise a simple fixture for conducting the bend...Ch. 2 - By pressing a small ball bearing against the top...Ch. 2 - Describe your observations regarding Fig. 2.14c.Ch. 2 - Embed a small steel ball in a soft block of...Ch. 2 - Devise a simple experiment, and perform tests on...Ch. 2 - Obtain some solid and some tubular metal pieces,...Ch. 2 - Explain how you would obtain an estimate of the...Ch. 2 - Without using the words stress or strain, define...Ch. 2 - We know that it is relatively easy to subject a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The Highest load sustained druing an uniaxial tensile testing experiment is 7,500lb. If the original cross section has a diamter of 0.25in, what is the ultimate tensile strength? (please also make a drawing)arrow_forwardDraw the stress-strain diagram for a steel specimen (a ductile material) showing both the conventional and true stress-strain curves. Label all aspects of the diagram. Define the following regions in the above diagram: elastic behavior, yielding, strain hardening, and necking. What are the characteristic stress limits? Locate and define them on the curves.arrow_forwardQI (a) A tensile stress is to be applied along the axis of a cylindrical steel rod that has a diameter of 7.5 mm. Given the Poisson's ratio, v is 0.30 and the modulus of elasticity, E of the steel is 207 GPa. Determine the magnitude of the load required to produce a 2.5 x10³ mm change in diameter if the deformation is entirely elastic. (b) Referring to the tensile test data tabulated in Table 1, answer the following questions: i. Select with justification the material that will experience the greatest percent reduction in area. ii. Select with justification which material is the strongest. Table 1. Tensile stress-strain data for several hypothetical metals Material Yield Tensile Strain at Fracture Elastic Strength Strength Fracture Strength Modulus (МРа) (MPa) (MPa) (GPa) A 310 340 0.23 265 210 100 120 0.40 105 150 C 415 550 0.15 500 310 D 700 850 0.14 720 210 E Fracture before yielding 650 350arrow_forward
- I just can't find The percent elongation at fracture.arrow_forwardA square specimen of is loaded using a three-point bend test. The load during the test is 419.6 N while the separation between the load points is 53.1mm. The flexural strength of MgO is equal to 103.4MPa . Compute the minimum possible thickness the specimen should have to avoid fractures during the bend test. Round your answer to three significant figures.arrow_forwardDraw a typical stress vs strain tensile test curve for the following material and label the axis. A typical brittle material subjected to a tensile stress that has been applied to the material till the sample breaks. 1- label the axis and draw the curve for a brittle material. 2- indicate the maximum strength of the material. 3- show on the portion of the curve where young's modulus can be calculated.arrow_forward
- Draw a typical stress vs strain tensile test curve for the following materials (two seperate graphs) and label the axis. A ductile metallic test specimen that is stretched to failure displaying a characteristic yield point and show the following parts on the curve. 1- Yield point 2- Ultimate Tensile Strength 3- Breaking point 4- Elastic Region 5- Plastic Region 6- Necking regionarrow_forward1- With the Vickers hardness test a 10 kg load gave for a sample of brass an indentation with diagonals having mean lengths of 0.510 mm. What is the hardness? Again, what is tensile strength of brass? 2- When a load is applied to a brass specimen in a Brinell test, an indentation of 4.10 mm is Ahimary produced. Estimate the tensile strength of the brass.arrow_forwardA tensile specimen of cylindrical brass cartridge subjected to a load of 350 kg has a cross section diameter of 3.5 mm and a gage length of 25 mm. Calculate the Young's modulus and engineering strain that occurred during a test if the distance between gage markings is 26.5 mm after the test.arrow_forward
- A ceramic part for a jet engine has a yield strength of 75,000 psi and a plane strain fracture toughness of 5,000 psiVin. To be sure that the part does not fail, we plan to ensure that the maximum applied stress is only one-third of the yield strength. We use a nondestructive test that will detect any internal faws greater than 0.05 in. long. Assuming that f = 1.4, does our nondestructive test have the required sensitivity? Explain. A manufacturine proorssthat unintentionarrow_forwardExample 2 Assume that a material has true stress - true strain curve given by: O = 100,000 ɛ0.5 psi. Calculate the true ultimate tensile strength and engineering UTS of this material. 96arrow_forwardForce P and length change AL data are given in table below for the initial portion of a tension test on 7075-T651 Al alloy. The diameter before testing was 9.07 mm., and the gage length Linitial for t length change measurement was 50.8 mm. Calculate corresponding values of engineering stress and strain, and display these values on a stress-strain plot. (use the region for drawing your plot in question sheet) P, kN AL mm 7.22 0.0839 14.34 0.1636 21.06 0.241 0.308 0.380 0.484 0.614 0.924 26.8 31.7 34.1 35.0 36.0 36.5 1.279 36.9 37.2 1.622 1.994arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY