Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780073398181
Author: Yunus A. Cengel Dr., Afshin J. Ghajar
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 29P
Consider a medium in which the heat conduction equation is given in its simplest form as
- Is heat transfer steady or transient?
- Is heat transfer one- two-, or three-dimensional?
- Is there heat generation in the medium?
- Is the thermal conductivity of the medium constant or variable?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1-D, steady-state conduction with uniform internal energy generation occurs in a plane wall with
a thickness of 50 mm and a constant thermal conductivity of 5 W/m/K. The temperature
distribution has the form T = a + bx + cx² °C. The surface at x=0 has a temperature of To =
120 °C and experiences convection with a fluid for which T..
surface at x= 50 mm is well insulated (no heat transfer). Find:
(a) The volumetric energy generation rate q. (15)
(b) Determine the coefficients a, b, and c.
20 °C and h 500 W/m² K. The
To:
= 120°C
T = 20°C
h = 500 W/m².K
111
Fluid
T(x)-
=
q, k = 5 W/m.K
L = 50 mm
Consider steady-state conditions for one-dimensional conduction in a plane wall having a thermal conductivity k = 40 W/m-K and a
thickness L= 0.35 m, with no internal heat generation.
Case
1
Determine the heat flux, in kW/m2, and the unknown quantity for each case.
2
3
4
5
i 68
i -40
T₁ (°C)
50
-30
70
T₁
i 126
T₂(°C)
-20
-10
40
L
30
-T₂
i
dT/dx(k/m)
-200
i 57.142
160
-80
200
i
i
i
8
q (kW/m²)
-2.285
-6.4
i 3.2
i -8
The temperature distribution across a wall 0.3 m thick at a certain instant of time is T(x) = a+ b+cx?, where T is
in degrees Celsius and x is in meters, a = 200°C,b = -200°, and c =
conductivity of 1 W /m · K.
30°C/m² . The wall has a thermal
(a) On a unit surface area basis, determine the rate of heat transfer into and out of the wall and the rate of change of
energy stored by the wall.
(b) If the cold surface is exposed to a fluid at 100°C, what is the convection coefficient?
k=1W/m•k
T(x) =200-200x + 30x²
200°C-
ĖST
142.7°C
q"out
| Fluid
Too = 100°C,h
9"in
|L-0.3m
Chapter 2 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 2 - How does transient heat transfer from steady heat...Ch. 2 - Is heat transfer a scalar or a vector quantity?...Ch. 2 - Does a hear flux vector at a point P on an...Ch. 2 - From a heat transfer point of view, what is the...Ch. 2 - What is heat generation in a solid? Give examples.Ch. 2 - Heat generation is also referred to as energy...Ch. 2 - In order to size the compressor of a new...Ch. 2 - In order to determine the size of the heating...Ch. 2 - Consider a round potato being baked in an oven....Ch. 2 - Consider an egg being cooked in boiling water in a...
Ch. 2 - Prob. 11CPCh. 2 - Consider the cooking process of a roast beef in an...Ch. 2 - Consider heat loss from a 200-L cylindrical hot...Ch. 2 - Consider a cold canned drink left on a dinner...Ch. 2 - Heat flux meters use a very sensitive device know...Ch. 2 - Consider a large 3-cm-thick stainless steel plate...Ch. 2 - In a nuclear reactor, heat is generated uniformly...Ch. 2 - Prob. 18PCh. 2 - Prob. 19EPCh. 2 - Writer down the one-dimensional transient heat...Ch. 2 - Writer down the one-dimensional transient heat...Ch. 2 - Starting with an energy balance on rectangular...Ch. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Starting with an energy balance on a volume...Ch. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - What is a boundary condition? How many boundary...Ch. 2 - What is an initial condition? How many initial...Ch. 2 - What is a thermal symmetry boundary condition? How...Ch. 2 - How is the boundary condition on an insulated...Ch. 2 - It is claimed that the temperature profile in a...Ch. 2 - Why do we try to avoid the radiation boundary...Ch. 2 - Consider an aluminum pan used to cook stew on top...Ch. 2 - Prob. 42PCh. 2 - Prob. 43PCh. 2 - Heat is generated in a long wire of radius ro at a...Ch. 2 - Consider a long pipe of inner radius r1, Outer...Ch. 2 - A 2-kW resistance heater wire whose thermal...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Consider a spherical shell of inner radius r1,...Ch. 2 - A container consists of two spherical layers, A...Ch. 2 - A spherical metal ball of radius ro is heated in...Ch. 2 - Prob. 52PCh. 2 - It is stated that the temperature in a plane wall...Ch. 2 - Consider one-dimensional heat conduction through a...Ch. 2 - Consider a solid cylindrical rod whose side...Ch. 2 - Consider a solid cylindrical rod whose ends are...Ch. 2 - Prob. 57PCh. 2 - Prob. 58PCh. 2 - Prob. 59PCh. 2 - Consider a 20-cm-thick concrete plane wall...Ch. 2 - Prob. 61PCh. 2 - Prob. 62PCh. 2 - Prob. 63PCh. 2 - Prob. 64PCh. 2 - Prob. 65EPCh. 2 - Prob. 66PCh. 2 - Consider a chilled-water pipe of length L, inner...Ch. 2 - Prob. 68EPCh. 2 - Prob. 69PCh. 2 - Prob. 70PCh. 2 - Prob. 71PCh. 2 - Prob. 72PCh. 2 - Prob. 73PCh. 2 - Prob. 74PCh. 2 - Prob. 75PCh. 2 - Prob. 76PCh. 2 - Prob. 77PCh. 2 - Prob. 78CPCh. 2 - Does heat generation in a solid violate the first...Ch. 2 - Prob. 80CPCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - Prob. 83PCh. 2 - Prob. 84PCh. 2 - Consider a large 3-cm thick stainless steel plate...Ch. 2 - Prob. 86PCh. 2 - Prob. 87EPCh. 2 - Prob. 88PCh. 2 - Prob. 89PCh. 2 - Prob. 90PCh. 2 - Heat is generated uniformly at a rate of 3 kW per...Ch. 2 - Prob. 92PCh. 2 - Prob. 93PCh. 2 - Prob. 94PCh. 2 - Prob. 95PCh. 2 - Prob. 96PCh. 2 - Prob. 97PCh. 2 - Prob. 98PCh. 2 - Prob. 99PCh. 2 - Prob. 100PCh. 2 - Prob. 101PCh. 2 - Prob. 102PCh. 2 - Prob. 103PCh. 2 - Prob. 104CPCh. 2 - When the thermal conductivity of a medium varies...Ch. 2 - The temperature of a plane wall during steady...Ch. 2 - Consider steady one-dimensional heat conduction in...Ch. 2 - Prob. 108CPCh. 2 - Prob. 109PCh. 2 - Prob. 110PCh. 2 - Prob. 111PCh. 2 - Consider a plane wall of thickness L whose thermal...Ch. 2 - Prob. 113PCh. 2 - Prob. 114PCh. 2 - A pipe is used for transporting boiling water in...Ch. 2 - Prob. 116PCh. 2 - Prob. 117PCh. 2 - Consider a spherical shell of inner radius r1 and...Ch. 2 - Prob. 119PCh. 2 - A spherical tank is filled with ice slurry, where...Ch. 2 - Prob. 121CPCh. 2 - Prob. 122CPCh. 2 - Can a differential equation involve more than one...Ch. 2 - Prob. 124CPCh. 2 - Prob. 125CPCh. 2 - Prob. 126CPCh. 2 - Prob. 127CPCh. 2 - How is integation related to derivation?Ch. 2 - Prob. 129CPCh. 2 - Prob. 130CPCh. 2 - How is the order of a differential equation...Ch. 2 - How do you distinguish a linear differential...Ch. 2 - How do you recognize a linear homogeneous...Ch. 2 - How do differential equations with constant...Ch. 2 - What kinds of differential equations can be solved...Ch. 2 - Consider a third-order linear and homogeneous...Ch. 2 - A large plane wall, with a thickness L and a...Ch. 2 - Prob. 138PCh. 2 - Prob. 139EPCh. 2 - A spherical vessel has an inner radius r1 and an...Ch. 2 - Consider a short cylinder of radius r0 and height...Ch. 2 - Prob. 142PCh. 2 - Prob. 143PCh. 2 - Consider a 20-cm-thick large concrete plane wall...Ch. 2 - Prob. 145PCh. 2 - Prob. 146PCh. 2 - Prob. 147EPCh. 2 - Prob. 148PCh. 2 - In a manufacturing plant, a quench hardening...Ch. 2 - Consider a water pipe of length L=17m, inner...Ch. 2 - Prob. 151PCh. 2 - Consider a spherical reactor of 5-cm diameter...Ch. 2 - Consider a cylindrical sheel of length L, inner...Ch. 2 - A pipe is used for transporting boiling water in...Ch. 2 - A metal spherical tank is filled with chemicals...Ch. 2 - The heat conduction equation in a medium is given...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a large plane wall of thicness L, thermal...Ch. 2 - A solar heat flux qs is incident on a sidewalk...Ch. 2 - A plane wall of thickness L is subjected to...Ch. 2 - Consider steady one-dimensional heat conduction...Ch. 2 - The conduction eqution boundary condition for an...Ch. 2 - Prob. 163PCh. 2 - Prob. 164PCh. 2 - The temperatures at the inner and outer surfaces...Ch. 2 - The thermal conductivity of a solid depends upon...Ch. 2 - Prob. 167PCh. 2 - Prob. 168PCh. 2 - Prob. 169PCh. 2 - Prob. 170PCh. 2 - Prob. 171PCh. 2 - Write essay on heat generation in nuc1e e1 rods....Ch. 2 - Write an interactive computer program to calculate...Ch. 2 - Prob. 174P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Show that the rate of heat conduction per unit length through a long, hollow cylinder of inner radius ri and outer radius ro, made of a material whose thermal conductivity varies linearly with temperature, is given by qkL=TiTo(rori)/kmA where Ti = temperature at the inner surface To = temperature at the outer surface A=2(rori)/ln(ro/ri)km=ko[1+k(Ti+To)/2]L=lenthofcyclinderarrow_forward2.38 The addition of aluminum fins has been suggested to increase the rate of heat dissipation from one side of an electronic device 1 m wide and 1 m tall. The fins are to be rectangular in cross section, 2.5 cm long and 0.25 cm thick, as shown in the figure. There are to be 100 fins per meter. The convection heat transfer coefficient, both for the wall and the fins, is estimated to be K. With this information determine the percent increase in the rate of heat transfer of the finned wall compared to the bare wall.arrow_forward3.16 A large, 2.54-cm.-thick copper plate is placed between two air streams. The heat transfer coefficient on one side is and on the other side is . If the temperature of both streams is suddenly changed from 38°C to 93°C, determine how long it takes for the copper plate to reach a temperature of 82°C.arrow_forward
- heat transferarrow_forwardQ1: In a nuclear reactor, heat is generated uniformly in the 5-cm-diameter cylindrical uranium rods at a rate of 7 x 10' W/m. If the length of the rods is 1 m, determine the rate of heat generation in each rod. Answer: Q=137.4 kW Q2: Write down the one-dimensional transient heat conduction equation for a plane wall with constant thermal conductivity and heat generation in its simplest form, and indicate what each term represents. Also, what is the units of every term? Q3: Consider a spherical container of inner radius r1, outer radius r2, and thermal conductivity k. Express the boundary condition on the inner surface of the container for steady one dimensional conduction for the following cases: (a) specified temperature of 50°C, (b) specified heat flux of 30 W/m² toward the center, (c) convection to a medium at T with a heat transfer coefficient of h. Q4: Heat is generated in a long wire of radius ro at a constant rate of go per unit volume. The wire is covered with a plastic…arrow_forwardConsider a medium in which the heat conduction equation is given in its simplest form as 1 d dT rk dr +ġ = 0: r dr (1) Is heat transfer steady or transient? (2) Is heat transfer one-, two-, or three-dimensional? (3) Is there heat generation in the medium? (4) Is the thermal conductivity of the medium constant or variable?arrow_forward
- Please solve this question in thermodynamicsarrow_forwardA plane wall of thickness 2L=40 mm and thermal conductivity k=5 W/m·K experiences uniform volumetric heat generation at a rate q, while convection heat transfer occurs at both of its surfaces (x=-L, +L), each of which is exposed to a fluid of temperature T=20 °C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x) = a+bx+cx² where a = 82.0 °C, b=-210 °C/m, c = -2x10 °C/m², and x is in meters. The origin of the x- coordinate is at the midplane of the wall. -L x -L (a) Determine the surface heat fluxes, qx(-L) and qx(+L). (b) What is the volumetric rate of heat generation & in the wall? (c) What is the convection heat transfer coefficient for the surfaces at x = +L? (d) Obtain an expression for the heat flux distribution q (as a function of x). Is the heat flux zero at any location? (e) If the source of the heat generation is suddenly deactivated (i. e. q = 0), what temperature will the wall eventually reach with q = 0?arrow_forwardHeat transferarrow_forward
- Consider steady-state conditions for one-dimensional conduction in a plane wall having a thermal conductivity k = 40 W/m-K and a thickness L = 0.3 m, with no internal heat generation. -T2 L Determine the heat flux, in kW/m², and the unknown quantity for each case. Case T1(°C) T2(°C) dT/dx(K/m) q (kW/m?) 1 50 -20 i i 2 -30 -10 i i 3 70 i 160 i 4 i 40 -80 i 5 i 30 200 iarrow_forwardA plane wall that is 20 cm thick and has a constant thermal conductivity k=3 W/m-K undergoes one dimensional steady conduction. The surface temperature of the left side of the wall is known (T1=50 deg C) and the right side of the wall is exposed to air (Tair-10 deg C) and convective heat transfer (h=60 W/m2-K). What is the temperature at the interface between the wall and the air on the right hand side (T2)?arrow_forwardHEAT TRANSFER (a) Determine the thermal conductivity of an insulating material given the following data: steel pipe with 0.1025 m inner diameter and 0.1150 m outer diameter, insulation thickness 3 cm, heat flow per meter is 150 W/m, steel thermal conductivity 55 W/m-°C, and overall temperature difference of 72.2°C. If the temperature of the steam inside the pipe is 128°C, (b) find the outside temperature of the insulating material.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license