Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780073398181
Author: Yunus A. Cengel Dr., Afshin J. Ghajar
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 38CP
How is the boundary condition on an insulated surface expressed mathematically?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The compartment below is used as a freezer of refrigerator compartment.
Inner wall is at -15 C and outer wall is at 25 C. Insulator with a thermal
conductivity of 0.035 W/(mK) is used to prevent the heat losses from the
compartment. The shape is in square form with a side of 1.2 m and unit
width into the page. Determine the thickness of the insulator if the
compartment heat load is 700 W? *
inner wall
outer wall
insulating material
5 cm
O 9.6 mm
4.2 cm
none
Please i need hand written solution on pages in 60 mins i will give you positive feedback
Which formula is used to calculate the heat conduction in the AXIAL direction in a
vertically located pipe segment whose inner and outer surfaces are perfectly
insulated. Here r, is inner radius, r, outer radius, Tri pipe inner surface temperature,
Tro pipe outer surface temperature, L is the length of the pipe, T the temperature on
the lower surface, Ty the temperature on upper surface.
Tu
r;
Tro
r
Chapter 2 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 2 - How does transient heat transfer from steady heat...Ch. 2 - Is heat transfer a scalar or a vector quantity?...Ch. 2 - Does a hear flux vector at a point P on an...Ch. 2 - From a heat transfer point of view, what is the...Ch. 2 - What is heat generation in a solid? Give examples.Ch. 2 - Heat generation is also referred to as energy...Ch. 2 - In order to size the compressor of a new...Ch. 2 - In order to determine the size of the heating...Ch. 2 - Consider a round potato being baked in an oven....Ch. 2 - Consider an egg being cooked in boiling water in a...
Ch. 2 - Prob. 11CPCh. 2 - Consider the cooking process of a roast beef in an...Ch. 2 - Consider heat loss from a 200-L cylindrical hot...Ch. 2 - Consider a cold canned drink left on a dinner...Ch. 2 - Heat flux meters use a very sensitive device know...Ch. 2 - Consider a large 3-cm-thick stainless steel plate...Ch. 2 - In a nuclear reactor, heat is generated uniformly...Ch. 2 - Prob. 18PCh. 2 - Prob. 19EPCh. 2 - Writer down the one-dimensional transient heat...Ch. 2 - Writer down the one-dimensional transient heat...Ch. 2 - Starting with an energy balance on rectangular...Ch. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Starting with an energy balance on a volume...Ch. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - What is a boundary condition? How many boundary...Ch. 2 - What is an initial condition? How many initial...Ch. 2 - What is a thermal symmetry boundary condition? How...Ch. 2 - How is the boundary condition on an insulated...Ch. 2 - It is claimed that the temperature profile in a...Ch. 2 - Why do we try to avoid the radiation boundary...Ch. 2 - Consider an aluminum pan used to cook stew on top...Ch. 2 - Prob. 42PCh. 2 - Prob. 43PCh. 2 - Heat is generated in a long wire of radius ro at a...Ch. 2 - Consider a long pipe of inner radius r1, Outer...Ch. 2 - A 2-kW resistance heater wire whose thermal...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Consider a spherical shell of inner radius r1,...Ch. 2 - A container consists of two spherical layers, A...Ch. 2 - A spherical metal ball of radius ro is heated in...Ch. 2 - Prob. 52PCh. 2 - It is stated that the temperature in a plane wall...Ch. 2 - Consider one-dimensional heat conduction through a...Ch. 2 - Consider a solid cylindrical rod whose side...Ch. 2 - Consider a solid cylindrical rod whose ends are...Ch. 2 - Prob. 57PCh. 2 - Prob. 58PCh. 2 - Prob. 59PCh. 2 - Consider a 20-cm-thick concrete plane wall...Ch. 2 - Prob. 61PCh. 2 - Prob. 62PCh. 2 - Prob. 63PCh. 2 - Prob. 64PCh. 2 - Prob. 65EPCh. 2 - Prob. 66PCh. 2 - Consider a chilled-water pipe of length L, inner...Ch. 2 - Prob. 68EPCh. 2 - Prob. 69PCh. 2 - Prob. 70PCh. 2 - Prob. 71PCh. 2 - Prob. 72PCh. 2 - Prob. 73PCh. 2 - Prob. 74PCh. 2 - Prob. 75PCh. 2 - Prob. 76PCh. 2 - Prob. 77PCh. 2 - Prob. 78CPCh. 2 - Does heat generation in a solid violate the first...Ch. 2 - Prob. 80CPCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - Prob. 83PCh. 2 - Prob. 84PCh. 2 - Consider a large 3-cm thick stainless steel plate...Ch. 2 - Prob. 86PCh. 2 - Prob. 87EPCh. 2 - Prob. 88PCh. 2 - Prob. 89PCh. 2 - Prob. 90PCh. 2 - Heat is generated uniformly at a rate of 3 kW per...Ch. 2 - Prob. 92PCh. 2 - Prob. 93PCh. 2 - Prob. 94PCh. 2 - Prob. 95PCh. 2 - Prob. 96PCh. 2 - Prob. 97PCh. 2 - Prob. 98PCh. 2 - Prob. 99PCh. 2 - Prob. 100PCh. 2 - Prob. 101PCh. 2 - Prob. 102PCh. 2 - Prob. 103PCh. 2 - Prob. 104CPCh. 2 - When the thermal conductivity of a medium varies...Ch. 2 - The temperature of a plane wall during steady...Ch. 2 - Consider steady one-dimensional heat conduction in...Ch. 2 - Prob. 108CPCh. 2 - Prob. 109PCh. 2 - Prob. 110PCh. 2 - Prob. 111PCh. 2 - Consider a plane wall of thickness L whose thermal...Ch. 2 - Prob. 113PCh. 2 - Prob. 114PCh. 2 - A pipe is used for transporting boiling water in...Ch. 2 - Prob. 116PCh. 2 - Prob. 117PCh. 2 - Consider a spherical shell of inner radius r1 and...Ch. 2 - Prob. 119PCh. 2 - A spherical tank is filled with ice slurry, where...Ch. 2 - Prob. 121CPCh. 2 - Prob. 122CPCh. 2 - Can a differential equation involve more than one...Ch. 2 - Prob. 124CPCh. 2 - Prob. 125CPCh. 2 - Prob. 126CPCh. 2 - Prob. 127CPCh. 2 - How is integation related to derivation?Ch. 2 - Prob. 129CPCh. 2 - Prob. 130CPCh. 2 - How is the order of a differential equation...Ch. 2 - How do you distinguish a linear differential...Ch. 2 - How do you recognize a linear homogeneous...Ch. 2 - How do differential equations with constant...Ch. 2 - What kinds of differential equations can be solved...Ch. 2 - Consider a third-order linear and homogeneous...Ch. 2 - A large plane wall, with a thickness L and a...Ch. 2 - Prob. 138PCh. 2 - Prob. 139EPCh. 2 - A spherical vessel has an inner radius r1 and an...Ch. 2 - Consider a short cylinder of radius r0 and height...Ch. 2 - Prob. 142PCh. 2 - Prob. 143PCh. 2 - Consider a 20-cm-thick large concrete plane wall...Ch. 2 - Prob. 145PCh. 2 - Prob. 146PCh. 2 - Prob. 147EPCh. 2 - Prob. 148PCh. 2 - In a manufacturing plant, a quench hardening...Ch. 2 - Consider a water pipe of length L=17m, inner...Ch. 2 - Prob. 151PCh. 2 - Consider a spherical reactor of 5-cm diameter...Ch. 2 - Consider a cylindrical sheel of length L, inner...Ch. 2 - A pipe is used for transporting boiling water in...Ch. 2 - A metal spherical tank is filled with chemicals...Ch. 2 - The heat conduction equation in a medium is given...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a large plane wall of thicness L, thermal...Ch. 2 - A solar heat flux qs is incident on a sidewalk...Ch. 2 - A plane wall of thickness L is subjected to...Ch. 2 - Consider steady one-dimensional heat conduction...Ch. 2 - The conduction eqution boundary condition for an...Ch. 2 - Prob. 163PCh. 2 - Prob. 164PCh. 2 - The temperatures at the inner and outer surfaces...Ch. 2 - The thermal conductivity of a solid depends upon...Ch. 2 - Prob. 167PCh. 2 - Prob. 168PCh. 2 - Prob. 169PCh. 2 - Prob. 170PCh. 2 - Prob. 171PCh. 2 - Write essay on heat generation in nuc1e e1 rods....Ch. 2 - Write an interactive computer program to calculate...Ch. 2 - Prob. 174P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- As a designer working for a major electric appliance manufacturer, you are required to estimate the amount of fiberglass insulation packing (k = 0.035 W/m K) that is needed for a kitchen oven shown in the figure below. The fiberglass layer is to be sandwiched between a 2-mm-thick aluminum cladding plate on the outside and a 5-mm-thick stainless steel plate on the inside that forms the core of the oven. The insulation thickness is such that the outside cladding temperature does not exceed 40C when the temperature at the inside surface of the oven is 300C. Also, the air temperature in the kitchen varies from 15Cto33C, and the average heat transfer coefficient between the outer surface of the oven and air is estimated to be 12.0W/m2K. Determine the thickness of the fiberglass insulation that is required for these conditions. What would be the outer surface temperature when the inside surface of the oven is at 475C?arrow_forwardDiscuss the general procedure for finite element analysis of physical problems. How does FEA differ from exact solutions approach for solving boundary value problems in engineering?arrow_forwardGChoose the right answer 1. The temperature profile for steady hest conduction through a plane wall of constant thermal conductivity is a. logarithmic b. parabolic 2. A brick wall (k-0.75 W/mK ) transmits $02 of heat loss through another wall (k-0.25 W/mK, x-100 mm). If the temperature difference across both walls is the same, the thickness of the brick wall would be a.150 mm c. linear 6T b. 240 mm c. 300 mm d. 375 mm 3. The maximum temperature at the center of the solid sphere of radius R having heat generation q (W/m') is given by g'R +9R b. T, + 4k T+9R 6k d. T+9R 8k a. 2k C. 4. The internal thermal resistance of a solid can be ignored if the Biot number is less than a. 1 b. 0.5 c. 0.1 d. Fourier number 5. The ratio of heat transfer of a fin to the heat transfer without fin is referred to as a. fin resistance b. fin efficieney efin effectiveness d. fin conductance.arrow_forward
- I need complete solutions And 4 decimal placesarrow_forwardThe compartment below is used as a freezer of refrigerator compartment. Inner wall is at -10 C and outer wall is at 20 C. Insulator with a thermal conductivity of 0.040 W/(mK) is used to prevent the heat losses from the compartment. The shape is in square form with a side of 1.3 m and unit width into the page. Determine the amount of the heat load if the thickness of the insulator is 2 cm? * a)700 W b)312 W c)78 W d)none e)500 Warrow_forwardThe compartment below is used as a freezer of refrigerator compartment. Inner wall is at -10 C and outer wall is at 20 C. Insulator with a thermal conductivity of 0.040 W/(mK) is used to prevent the heat losses from the compartment. The shape is in square form with a side of 1.3 m and unit width into the page. Determine the amount of the heat load if the thickness of the insulator is 2 cm? *arrow_forward
- 1. Temperatures are measured at the left-hand face and at a point 4 cm from the left-hand face of the planar wall shown in the figure below. These temperatures are T₁ = 45.3 °C and T* = 21.2 °C. The heat flow through the planar wall is steady and one dimensional. What is the value of T2 at the right-hand surface of the wall? TI T* 4 cm 10 cm T2arrow_forwardshow schematic drawings, conversions, units and box in your final answers A furnace wall is made up of three layer of thickness 200 mm, 100 mm, and 125 mm with thermal conductivity of 1.65 W/m-K, k2, and 9.2 W/m-K respectively. The inside is exposed to gases at 1200°C with a convection coefficient of 25 W/m²-K and the inside surface temperature is at 1000°C, the outside air temperature is at 30°C with convection coefficient of 12 W/m²-K. Calculate: a. the unknown thermal conductivity; b. the outside surface temperature and mid-plane temperatures in °F.arrow_forwardT 1000 K 350 K Heat flow 6k 4k Heat transfer through a composite wall of two sections, each having same thickness (l), is shown in figure. The thermal conductivity of one section is 6k and that of the other is 4k respectively. The left face of wall is at 1000 K and right face at 350 K. The temperature T(in K) of the interface of the composite wall is .arrow_forward
- A wall of a house is made from two layers of bricks enclosing a layer of insulation. A radiator is positioned to cover the whole internal surface, and used intermittently when the internal temperature is low. The external surface is exposed to the outside air. Which of the following assumptions could be used to identify the relevant reduced form of the conduction equation to find the temperature in the wall. a. Conduction is mainly in two directions. b. Conduction is mainly in one direction. c. The wall properties are homogeneous. d. Steady conditions exist. e. Unsteady conditions exist. f. There is an internal volumetric heat generation in the wall.arrow_forwardConsider a copper plate that has dimensions of 3 cm x 3 cm x 7 cm (length, width, and thickness, respectively). As shown in the following figure, the copper plate is exposed to a thermal energy source that puts out 126 J every second. The density of copper is 8,900 kg/m³. Assume there is no heat loss to the surrounding block. 126 J Copper Insulation Ⓡ What is the specific heat of copper (in J/(kg K))? J/(kg. K) What is the mass of the copper plate (in kg)? kg How much energy (in J) will be consumed during 11 seconds? J Determine the temperature rise (in K) in the plate after 11 seconds.arrow_forward1- A solid infinitely long cylinder, radius 2 cm, has uniform internal heat generation. The temperature distribution in the cylinder is T(r) = = 256 – 8.6 x 104 r² where r is in meters, T in °C and the thermal conductivity of the cylinder material is 16 W/ m °C. Determine: (a) The temperature at the centerline. (b) The surface temperature. (c) The heat flux at the surface. (d) The rate of heat transfer to the surrounding per unit meter of cylinder length.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license