Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780073398181
Author: Yunus A. Cengel Dr., Afshin J. Ghajar
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 123CP
Can a differential equation involve more than one independent variable? Can it involve more than one dependent variable? Give examples.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A hot water pipe is 100 mm in diameter and 80 m long. This pipe is insulated in two layers.
First layer is 25 mm thick, thermal conductivity is 0.12 W/m C material, second layer is 45 mm thick
It is made of material with a thermal conductivity of 0.05 W/m C. T1, T2 and T3 are the surface
temperatures in the pipe. One
With the acceptance of heat transfer in dimensional and continuous conditions, transfer from the
pipe in case T1= 600 OC and T3= 35 C
Find the amount of heat released and the temperature T2.
2.tabaka
1.tabaka
100 mm
T₁ T₂
T3
Discuss the general procedure for finite element analysis of physical problems. How does FEA differ from exact solutions approach for solving boundary value problems in engineering?
Which formula is used to calculate the heat conduction in the AXIAL direction in a
vertically located pipe segment whose inner and outer surfaces are perfectly
insulated. Here r, is inner radius, r, outer radius, Tri pipe inner surface temperature,
Tro pipe outer surface temperature, L is the length of the pipe, T the temperature on
the lower surface, Ty the temperature on upper surface.
Tu
r;
Tro
r
Chapter 2 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 2 - How does transient heat transfer from steady heat...Ch. 2 - Is heat transfer a scalar or a vector quantity?...Ch. 2 - Does a hear flux vector at a point P on an...Ch. 2 - From a heat transfer point of view, what is the...Ch. 2 - What is heat generation in a solid? Give examples.Ch. 2 - Heat generation is also referred to as energy...Ch. 2 - In order to size the compressor of a new...Ch. 2 - In order to determine the size of the heating...Ch. 2 - Consider a round potato being baked in an oven....Ch. 2 - Consider an egg being cooked in boiling water in a...
Ch. 2 - Prob. 11CPCh. 2 - Consider the cooking process of a roast beef in an...Ch. 2 - Consider heat loss from a 200-L cylindrical hot...Ch. 2 - Consider a cold canned drink left on a dinner...Ch. 2 - Heat flux meters use a very sensitive device know...Ch. 2 - Consider a large 3-cm-thick stainless steel plate...Ch. 2 - In a nuclear reactor, heat is generated uniformly...Ch. 2 - Prob. 18PCh. 2 - Prob. 19EPCh. 2 - Writer down the one-dimensional transient heat...Ch. 2 - Writer down the one-dimensional transient heat...Ch. 2 - Starting with an energy balance on rectangular...Ch. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Starting with an energy balance on a volume...Ch. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - What is a boundary condition? How many boundary...Ch. 2 - What is an initial condition? How many initial...Ch. 2 - What is a thermal symmetry boundary condition? How...Ch. 2 - How is the boundary condition on an insulated...Ch. 2 - It is claimed that the temperature profile in a...Ch. 2 - Why do we try to avoid the radiation boundary...Ch. 2 - Consider an aluminum pan used to cook stew on top...Ch. 2 - Prob. 42PCh. 2 - Prob. 43PCh. 2 - Heat is generated in a long wire of radius ro at a...Ch. 2 - Consider a long pipe of inner radius r1, Outer...Ch. 2 - A 2-kW resistance heater wire whose thermal...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Consider a spherical shell of inner radius r1,...Ch. 2 - A container consists of two spherical layers, A...Ch. 2 - A spherical metal ball of radius ro is heated in...Ch. 2 - Prob. 52PCh. 2 - It is stated that the temperature in a plane wall...Ch. 2 - Consider one-dimensional heat conduction through a...Ch. 2 - Consider a solid cylindrical rod whose side...Ch. 2 - Consider a solid cylindrical rod whose ends are...Ch. 2 - Prob. 57PCh. 2 - Prob. 58PCh. 2 - Prob. 59PCh. 2 - Consider a 20-cm-thick concrete plane wall...Ch. 2 - Prob. 61PCh. 2 - Prob. 62PCh. 2 - Prob. 63PCh. 2 - Prob. 64PCh. 2 - Prob. 65EPCh. 2 - Prob. 66PCh. 2 - Consider a chilled-water pipe of length L, inner...Ch. 2 - Prob. 68EPCh. 2 - Prob. 69PCh. 2 - Prob. 70PCh. 2 - Prob. 71PCh. 2 - Prob. 72PCh. 2 - Prob. 73PCh. 2 - Prob. 74PCh. 2 - Prob. 75PCh. 2 - Prob. 76PCh. 2 - Prob. 77PCh. 2 - Prob. 78CPCh. 2 - Does heat generation in a solid violate the first...Ch. 2 - Prob. 80CPCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - Prob. 83PCh. 2 - Prob. 84PCh. 2 - Consider a large 3-cm thick stainless steel plate...Ch. 2 - Prob. 86PCh. 2 - Prob. 87EPCh. 2 - Prob. 88PCh. 2 - Prob. 89PCh. 2 - Prob. 90PCh. 2 - Heat is generated uniformly at a rate of 3 kW per...Ch. 2 - Prob. 92PCh. 2 - Prob. 93PCh. 2 - Prob. 94PCh. 2 - Prob. 95PCh. 2 - Prob. 96PCh. 2 - Prob. 97PCh. 2 - Prob. 98PCh. 2 - Prob. 99PCh. 2 - Prob. 100PCh. 2 - Prob. 101PCh. 2 - Prob. 102PCh. 2 - Prob. 103PCh. 2 - Prob. 104CPCh. 2 - When the thermal conductivity of a medium varies...Ch. 2 - The temperature of a plane wall during steady...Ch. 2 - Consider steady one-dimensional heat conduction in...Ch. 2 - Prob. 108CPCh. 2 - Prob. 109PCh. 2 - Prob. 110PCh. 2 - Prob. 111PCh. 2 - Consider a plane wall of thickness L whose thermal...Ch. 2 - Prob. 113PCh. 2 - Prob. 114PCh. 2 - A pipe is used for transporting boiling water in...Ch. 2 - Prob. 116PCh. 2 - Prob. 117PCh. 2 - Consider a spherical shell of inner radius r1 and...Ch. 2 - Prob. 119PCh. 2 - A spherical tank is filled with ice slurry, where...Ch. 2 - Prob. 121CPCh. 2 - Prob. 122CPCh. 2 - Can a differential equation involve more than one...Ch. 2 - Prob. 124CPCh. 2 - Prob. 125CPCh. 2 - Prob. 126CPCh. 2 - Prob. 127CPCh. 2 - How is integation related to derivation?Ch. 2 - Prob. 129CPCh. 2 - Prob. 130CPCh. 2 - How is the order of a differential equation...Ch. 2 - How do you distinguish a linear differential...Ch. 2 - How do you recognize a linear homogeneous...Ch. 2 - How do differential equations with constant...Ch. 2 - What kinds of differential equations can be solved...Ch. 2 - Consider a third-order linear and homogeneous...Ch. 2 - A large plane wall, with a thickness L and a...Ch. 2 - Prob. 138PCh. 2 - Prob. 139EPCh. 2 - A spherical vessel has an inner radius r1 and an...Ch. 2 - Consider a short cylinder of radius r0 and height...Ch. 2 - Prob. 142PCh. 2 - Prob. 143PCh. 2 - Consider a 20-cm-thick large concrete plane wall...Ch. 2 - Prob. 145PCh. 2 - Prob. 146PCh. 2 - Prob. 147EPCh. 2 - Prob. 148PCh. 2 - In a manufacturing plant, a quench hardening...Ch. 2 - Consider a water pipe of length L=17m, inner...Ch. 2 - Prob. 151PCh. 2 - Consider a spherical reactor of 5-cm diameter...Ch. 2 - Consider a cylindrical sheel of length L, inner...Ch. 2 - A pipe is used for transporting boiling water in...Ch. 2 - A metal spherical tank is filled with chemicals...Ch. 2 - The heat conduction equation in a medium is given...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a large plane wall of thicness L, thermal...Ch. 2 - A solar heat flux qs is incident on a sidewalk...Ch. 2 - A plane wall of thickness L is subjected to...Ch. 2 - Consider steady one-dimensional heat conduction...Ch. 2 - The conduction eqution boundary condition for an...Ch. 2 - Prob. 163PCh. 2 - Prob. 164PCh. 2 - The temperatures at the inner and outer surfaces...Ch. 2 - The thermal conductivity of a solid depends upon...Ch. 2 - Prob. 167PCh. 2 - Prob. 168PCh. 2 - Prob. 169PCh. 2 - Prob. 170PCh. 2 - Prob. 171PCh. 2 - Write essay on heat generation in nuc1e e1 rods....Ch. 2 - Write an interactive computer program to calculate...Ch. 2 - Prob. 174P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- As the temperature increases, the thermal conductivity of a gas... (A) increases (B) decreases (C) remains constant (D) increases up to a certain temperature and then decreasearrow_forwardGiven a plate with a thickness of 10 cm and an area of 1 m^2, the bottom surface of the plate is insulated, and the upper surface is exposed to heat conduction. The surface temperature of the plate is 100 °C. The plate generates 400 kW/m^3 of heat. The heat conduction coefficient of the plate is 50 W/m.°C. Assuming one-dimensional heat transfer; a) Determine the differential equation and boundary conditions in the plate under steady conditions. Solve the differential equation to find the temperature distribution. b) Calculate the maximum temperature. c) If the heat transfer coefficient of the environment where the plate is located is 500 W/m^2.°C, calculate the ambient temperature.arrow_forwardPLEASE HELP ANSWER THIS THERMODYNAMICS PRACTICE QUESTION THANK YOUarrow_forward
- Consider 1D heat conduction in a Cu rod with an average temperature of 25C. Does there exist a maximum (or upper-limit value) temperature gradient for heat conduction. If so, what is that value with justification on the derivation/scientific reasoning. The thermal conductivity is k=385 W/m*K. The diameter of the rod is left in terms of d.arrow_forwardIn convection heat transfer, what mechanism heat transfer where the fluid moves due to the decrease in its density caused by increase in temperature? Select the correct response: O Natural convection Forced convection Density convection Radical convectionarrow_forwardYou are asked to estimate the maximum human body temperature if the metabolic heat produced in your body could escape only by tissue conduction and later on the surface by convection. Simplify the human body as a cylinder of L=1.8 m in height and ro= 0.15 m in radius. Further, simplify the heat transfer process inside the human body as a 1-D situation when the temperature only depends on the radial coordinater from the centerline. The governing dT +q""=0 dr equation is written as 1 d k- r dr r = 0, dT dr =0 dT r=ro -k -=h(T-T) dr (k-0.5 W/m°C), ro is the radius of the cylinder (0.15 m), h is the convection coefficient at the skin surface (15 W/m² °C), Tair is the air temperature (30°C). q" is the average volumetric heat generation rate in the body (W/m³) and is defined as heat generated per unit volume per second. The 1-D (radial) temperature distribution can be derived as: T(r) = q"¹'r² qr qr. + 4k 2h + 4k +T , where k is thermal conductivity of tissue air (A) q" can be calculated…arrow_forward
- Please solve this question in thermodynamicsarrow_forwardFinite difference formulation for steady two- dimensional heat conduction in a region with heat generation and constant thermal conductivity in rectangular coordinates no boal-generalian 18 12 10 Dy A Dx 2 HE. conduction..node. ( 14,13,3, 1°, 6,T 3.arrow_forwardPlease provide one-dimensional heat conduction equation in a sphere starting from energy balance for a system.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license