Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780073398181
Author: Yunus A. Cengel Dr., Afshin J. Ghajar
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 51P
A spherical metal ball of radius ro is heated in an oven to a temperature of Ti throughout and is then take out of the oven and dropped into a large body of water at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You are asked to estimate the maximum human body temperature if the metabolic
heat produced in your body could escape only by tissue conduction and later on the surface by
convection. Simplify the human body as a cylinder of L=1.8 m in height and ro= 0.15 m in
radius. Further, simplify the heat transfer process inside the human body as a 1-D situation when
the temperature only depends on the radial coordinater from the centerline. The governing
dT
+q""=0
dr
equation is written as
1 d
k-
r dr
r = 0,
dT
dr
=0
dT
r=ro -k -=h(T-T)
dr
(k-0.5 W/m°C), ro is the radius of the cylinder (0.15 m), h is the convection coefficient at the
skin surface (15 W/m² °C), Tair is the air temperature (30°C). q" is the average volumetric heat
generation rate in the body (W/m³) and is defined as heat generated per unit volume per second.
The 1-D (radial) temperature distribution can be derived as:
T(r) =
q"¹'r² qr qr.
+
4k 2h
+
4k
+T
, where k is thermal conductivity of tissue
air
(A) q" can be calculated…
Choose the correct option with full solution from the given question
Which formula is used to calculate the heat conduction in the AXIAL direction in a
vertically located pipe segment whose inner and outer surfaces are perfectly
insulated. Here r, is inner radius, r, outer radius, Tri pipe inner surface temperature,
Tro pipe outer surface temperature, L is the length of the pipe, T the temperature on
the lower surface, Ty the temperature on upper surface.
Tu
r;
Tro
r
Chapter 2 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 2 - How does transient heat transfer from steady heat...Ch. 2 - Is heat transfer a scalar or a vector quantity?...Ch. 2 - Does a hear flux vector at a point P on an...Ch. 2 - From a heat transfer point of view, what is the...Ch. 2 - What is heat generation in a solid? Give examples.Ch. 2 - Heat generation is also referred to as energy...Ch. 2 - In order to size the compressor of a new...Ch. 2 - In order to determine the size of the heating...Ch. 2 - Consider a round potato being baked in an oven....Ch. 2 - Consider an egg being cooked in boiling water in a...
Ch. 2 - Prob. 11CPCh. 2 - Consider the cooking process of a roast beef in an...Ch. 2 - Consider heat loss from a 200-L cylindrical hot...Ch. 2 - Consider a cold canned drink left on a dinner...Ch. 2 - Heat flux meters use a very sensitive device know...Ch. 2 - Consider a large 3-cm-thick stainless steel plate...Ch. 2 - In a nuclear reactor, heat is generated uniformly...Ch. 2 - Prob. 18PCh. 2 - Prob. 19EPCh. 2 - Writer down the one-dimensional transient heat...Ch. 2 - Writer down the one-dimensional transient heat...Ch. 2 - Starting with an energy balance on rectangular...Ch. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Starting with an energy balance on a volume...Ch. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - What is a boundary condition? How many boundary...Ch. 2 - What is an initial condition? How many initial...Ch. 2 - What is a thermal symmetry boundary condition? How...Ch. 2 - How is the boundary condition on an insulated...Ch. 2 - It is claimed that the temperature profile in a...Ch. 2 - Why do we try to avoid the radiation boundary...Ch. 2 - Consider an aluminum pan used to cook stew on top...Ch. 2 - Prob. 42PCh. 2 - Prob. 43PCh. 2 - Heat is generated in a long wire of radius ro at a...Ch. 2 - Consider a long pipe of inner radius r1, Outer...Ch. 2 - A 2-kW resistance heater wire whose thermal...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Consider a spherical shell of inner radius r1,...Ch. 2 - A container consists of two spherical layers, A...Ch. 2 - A spherical metal ball of radius ro is heated in...Ch. 2 - Prob. 52PCh. 2 - It is stated that the temperature in a plane wall...Ch. 2 - Consider one-dimensional heat conduction through a...Ch. 2 - Consider a solid cylindrical rod whose side...Ch. 2 - Consider a solid cylindrical rod whose ends are...Ch. 2 - Prob. 57PCh. 2 - Prob. 58PCh. 2 - Prob. 59PCh. 2 - Consider a 20-cm-thick concrete plane wall...Ch. 2 - Prob. 61PCh. 2 - Prob. 62PCh. 2 - Prob. 63PCh. 2 - Prob. 64PCh. 2 - Prob. 65EPCh. 2 - Prob. 66PCh. 2 - Consider a chilled-water pipe of length L, inner...Ch. 2 - Prob. 68EPCh. 2 - Prob. 69PCh. 2 - Prob. 70PCh. 2 - Prob. 71PCh. 2 - Prob. 72PCh. 2 - Prob. 73PCh. 2 - Prob. 74PCh. 2 - Prob. 75PCh. 2 - Prob. 76PCh. 2 - Prob. 77PCh. 2 - Prob. 78CPCh. 2 - Does heat generation in a solid violate the first...Ch. 2 - Prob. 80CPCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - Prob. 83PCh. 2 - Prob. 84PCh. 2 - Consider a large 3-cm thick stainless steel plate...Ch. 2 - Prob. 86PCh. 2 - Prob. 87EPCh. 2 - Prob. 88PCh. 2 - Prob. 89PCh. 2 - Prob. 90PCh. 2 - Heat is generated uniformly at a rate of 3 kW per...Ch. 2 - Prob. 92PCh. 2 - Prob. 93PCh. 2 - Prob. 94PCh. 2 - Prob. 95PCh. 2 - Prob. 96PCh. 2 - Prob. 97PCh. 2 - Prob. 98PCh. 2 - Prob. 99PCh. 2 - Prob. 100PCh. 2 - Prob. 101PCh. 2 - Prob. 102PCh. 2 - Prob. 103PCh. 2 - Prob. 104CPCh. 2 - When the thermal conductivity of a medium varies...Ch. 2 - The temperature of a plane wall during steady...Ch. 2 - Consider steady one-dimensional heat conduction in...Ch. 2 - Prob. 108CPCh. 2 - Prob. 109PCh. 2 - Prob. 110PCh. 2 - Prob. 111PCh. 2 - Consider a plane wall of thickness L whose thermal...Ch. 2 - Prob. 113PCh. 2 - Prob. 114PCh. 2 - A pipe is used for transporting boiling water in...Ch. 2 - Prob. 116PCh. 2 - Prob. 117PCh. 2 - Consider a spherical shell of inner radius r1 and...Ch. 2 - Prob. 119PCh. 2 - A spherical tank is filled with ice slurry, where...Ch. 2 - Prob. 121CPCh. 2 - Prob. 122CPCh. 2 - Can a differential equation involve more than one...Ch. 2 - Prob. 124CPCh. 2 - Prob. 125CPCh. 2 - Prob. 126CPCh. 2 - Prob. 127CPCh. 2 - How is integation related to derivation?Ch. 2 - Prob. 129CPCh. 2 - Prob. 130CPCh. 2 - How is the order of a differential equation...Ch. 2 - How do you distinguish a linear differential...Ch. 2 - How do you recognize a linear homogeneous...Ch. 2 - How do differential equations with constant...Ch. 2 - What kinds of differential equations can be solved...Ch. 2 - Consider a third-order linear and homogeneous...Ch. 2 - A large plane wall, with a thickness L and a...Ch. 2 - Prob. 138PCh. 2 - Prob. 139EPCh. 2 - A spherical vessel has an inner radius r1 and an...Ch. 2 - Consider a short cylinder of radius r0 and height...Ch. 2 - Prob. 142PCh. 2 - Prob. 143PCh. 2 - Consider a 20-cm-thick large concrete plane wall...Ch. 2 - Prob. 145PCh. 2 - Prob. 146PCh. 2 - Prob. 147EPCh. 2 - Prob. 148PCh. 2 - In a manufacturing plant, a quench hardening...Ch. 2 - Consider a water pipe of length L=17m, inner...Ch. 2 - Prob. 151PCh. 2 - Consider a spherical reactor of 5-cm diameter...Ch. 2 - Consider a cylindrical sheel of length L, inner...Ch. 2 - A pipe is used for transporting boiling water in...Ch. 2 - A metal spherical tank is filled with chemicals...Ch. 2 - The heat conduction equation in a medium is given...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a large plane wall of thicness L, thermal...Ch. 2 - A solar heat flux qs is incident on a sidewalk...Ch. 2 - A plane wall of thickness L is subjected to...Ch. 2 - Consider steady one-dimensional heat conduction...Ch. 2 - The conduction eqution boundary condition for an...Ch. 2 - Prob. 163PCh. 2 - Prob. 164PCh. 2 - The temperatures at the inner and outer surfaces...Ch. 2 - The thermal conductivity of a solid depends upon...Ch. 2 - Prob. 167PCh. 2 - Prob. 168PCh. 2 - Prob. 169PCh. 2 - Prob. 170PCh. 2 - Prob. 171PCh. 2 - Write essay on heat generation in nuc1e e1 rods....Ch. 2 - Write an interactive computer program to calculate...Ch. 2 - Prob. 174P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Show that the rate of heat conduction per unit length through a long, hollow cylinder of inner radius ri and outer radius ro, made of a material whose thermal conductivity varies linearly with temperature, is given by qkL=TiTo(rori)/kmA where Ti = temperature at the inner surface To = temperature at the outer surface A=2(rori)/ln(ro/ri)km=ko[1+k(Ti+To)/2]L=lenthofcyclinderarrow_forward2.29 In a cylindrical fuel rod of a nuclear reactor, heat is generated internally according to the equation where = local rate of heat generation per unit volume at r = outside radius = rate of heat generation per unit volume at the centerline Calculate the temperature drop from the centerline to the surface for a 2.5-cm-diameter rod having a thermal conductivity of if the rate of heat removal from its surface is 1.6 .arrow_forward3.16 A large, 2.54-cm.-thick copper plate is placed between two air streams. The heat transfer coefficient on one side is and on the other side is . If the temperature of both streams is suddenly changed from 38°C to 93°C, determine how long it takes for the copper plate to reach a temperature of 82°C.arrow_forward
- 1.67 In beauty salons and in homes, a ubiquitous device is the hairdryer. The front end of a typical hairdryer is idealized as a thin-walled cylindrical duct with a 6-cm diameter with a fan at the inlet that blows air over an electric heating coil as schematically shown in the figure. The design of this appliance requires two power settings, with which the air blown over the electric heating coil is heated from the ambient temperature of to an outlet temperature of and with exit air velocities of 1.0 m/s and 1.5 m/s. Estimate the electric power required for the heating coil to meet these conditions, assuming that heat loss from the outside of the dryer duct is neglected.arrow_forward2.43 A turbine blade 6.3 cm long, with cross-sectional area and perimeter , is made of stainless steel . The temperature of the root, , is . The blade is exposed to a hot gas at , and the heat transfer coefficient is K. Determine the temperature of the blade tip and the rate of heat flow at the root of the blade. Assume that the tip is insulated.arrow_forwardPlease solve this question in thermodynamicsarrow_forward
- B- A Blood warming device contains a 20 mm diameter copper pipe is used to carry warm water, the external surface of the pipe is subjected to convective heated transfer coefficient of h 6 W/m² K, find the heat loss by convection per meter length of the pipe when the external °C and surface temperature is 40 the surrounding are at 20 °C.?arrow_forwardStarting with an energy balance on the volume element, obtain the two-dimensional transient explicit finite difference equation for a general interior node in rectangular coordinates for T(x, y, t) for the case of constant thermal conductivity and uniform heat generation.arrow_forwardh = 11 W/m R (Uutslut Consider steady-state heat conduction through a cylindrical wall T The fluid on the inside. at 590 K with a heat transfer coefficiect of 23 W/m“ K. The temperature on the outsida surface of the wall is known and maintained at 420 K. The heat flow rate through the cylind-ie. Wall is 200 W per 1 m length of the cylinder. If the wall has a thermal conductivity of 0.17 K. what are the inside and outside radii of the cylindrical wall? The ratio of the outside radiue inside radius is 2. Calculate the net heat flow by radiation to the fumace all at 530 K from the fumace (3) floor at 810 K. Both surfaces can be considered to be black radiators. ::!...: AT 1 1.... 3.7 の- Ta-arrow_forward
- Q) The temperature of a heated plate is 88°C which is cooled by using pin-fins having a length of 5-cm, diameter of 1-cm, and thermal conductivity of (k=201 W/m-°C). The number of pins is (N=1800) and the temperature of the atmosphere is 10°C, while the convection heat transfer coefficient on the surfaces is 37 W/m2.°C. Assuming steady one-dimensional heat transfer along the fin and taking the nodal spacing to be 2.5-cm, determine (a) the temperature at the nodes along the fins, (b) the heat transfer rate from a single fin, (c) the heat transfer rate from all fins, and (d) the overall heat transfer rate from the heated plate which has dimensions of 0.6-m x 0.5-m with the fins.arrow_forwardA plane wall of thickness 2L=40 mm and thermal conductivity k=5 W/m·K experiences uniform volumetric heat generation at a rate q, while convection heat transfer occurs at both of its surfaces (x=-L, +L), each of which is exposed to a fluid of temperature T=20 °C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x) = a+bx+cx² where a = 82.0 °C, b=-210 °C/m, c = -2x10 °C/m², and x is in meters. The origin of the x- coordinate is at the midplane of the wall. -L x -L (a) Determine the surface heat fluxes, qx(-L) and qx(+L). (b) What is the volumetric rate of heat generation & in the wall? (c) What is the convection heat transfer coefficient for the surfaces at x = +L? (d) Obtain an expression for the heat flux distribution q (as a function of x). Is the heat flux zero at any location? (e) If the source of the heat generation is suddenly deactivated (i. e. q = 0), what temperature will the wall eventually reach with q = 0?arrow_forwardH.W.: Q1: Consider steady two-dimensional heat transfer in a long solid body whose cross section is given in the figure. The temperatures at the selected nodes and the thermal conditions at the boundaries are as shown. The thermal conductivity of the body is k = 45 W/m. °C, and heat is generated in the body uniformly at a rate of g = 6 x 106 W/m3. Using the finite difference method with a mesh size of Ax = Ay = 5.0 cm, determine (a) the temperatures at nodes 1, 2, and 3 and (b) the rate of heat loss from the bottom surface through a 1-m-long section of the body. . 200°C 5 cm 5 cm g=6x 10 W/m² 260 3 240 305 290 Insulation 1 Convection T₂= 20°C, h= 50 W/m² °C 350°C 325arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license