Concept explainers
The heat conduction equation in a medium is given in its simplest form as
Select the Tong statement below.
(a) The medium is of cylindncal shape.
(b) The thermal conductivity of the medium is constant.
(c) Heat transfer though the medium is stead.
(d) There is heat generation within the medium.
(e) Heat conduction through the medium is one-dimensional.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Heat and Mass Transfer: Fundamentals and Applications
- A plane wall 15 cm thick has a thermal conductivity given by the relation k=2.0+0.0005T[W/mK] where T is in kelvin. If one surface of this wall is maintained at 150C and the other at 50C, determine the rate of heat transfer per square meter. Sketch the temperature distribution through the wall.arrow_forwardDiscuss the modes of heat transfer that determine the equilibrium temperature of the space shuttle Endeavour when it is in orbit. What happens when it reenters the earths atmosphere?arrow_forwardA plane wall of thickness 2L has internal heat sources whose strength varies according to qG=qocos(ax) Where qo is the heat generated per unit volume at the center of the wall (x=0) and a is a constant. If both sides of the wall are maintained at a constant temperature of Tw, derive an expression for the total heat loss from the wall per unit surface area.arrow_forward
- To determine the thermal conductivity of a structural material, a large 15-cm-thick slab of the material is subjected to a uniform heat flux of 2500 W/m2 while thermocouples embedded in the wall at 2.5 cm. intervals are read over a period of time. After the system had reached equilibrium, an operator recorded the thermocouple readings shown below for two different environmental conditions: Distance from the Surface (cm) Temperature (C) Test 1 0 40 5 65 10 97 15 132 Test 2 0 95 5 130 10 168 15 208 From these data, determine an approximate expression for the thermal conductivity as a function of temperature between 40 and 208C.arrow_forward1.77 Explain each in your own words. (a) What is the mode of heat transfer through a large steel plate that has its surfaces at specified temperatures? (b) What are the modes when the temperature on one surface of the steel plate is not specified, but the surface is exposed to a fluid at a specified temperature?arrow_forwardHeat transferarrow_forward
- Answer correctly and quickly as possible please.arrow_forwardConsider a copper plate that has dimensions of 3 cm x 3 cm x 7 cm (length, width, and thickness, respectively). As shown in the following figure, the copper plate is exposed to a thermal energy source that puts out 126 J every second. The density of copper is 8,900 kg/m³. Assume there is no heat loss to the surrounding block. 126 J Copper Insulation Ⓡ What is the specific heat of copper (in J/(kg K))? J/(kg. K) What is the mass of the copper plate (in kg)? kg How much energy (in J) will be consumed during 11 seconds? J Determine the temperature rise (in K) in the plate after 11 seconds.arrow_forward1-D, steady-state conduction with uniform internal energy generation occurs in a plane wall with a thickness of 50 mm and a constant thermal conductivity of 5 W/m/K. The temperature distribution has the form T = a + bx + cx² °C. The surface at x=0 has a temperature of To = 120 °C and experiences convection with a fluid for which T.. surface at x= 50 mm is well insulated (no heat transfer). Find: (a) The volumetric energy generation rate q. (15) (b) Determine the coefficients a, b, and c. 20 °C and h 500 W/m² K. The To: = 120°C T = 20°C h = 500 W/m².K 111 Fluid T(x)- = q, k = 5 W/m.K L = 50 mmarrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning