Consider a cylindrical sheel of length L, inner radius r1, and outer radius r2 whose thermal conductivity varies in a specified temperature range as
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Heat and Mass Transfer: Fundamentals and Applications
- 2.29 In a cylindrical fuel rod of a nuclear reactor, heat is generated internally according to the equation where = local rate of heat generation per unit volume at r = outside radius = rate of heat generation per unit volume at the centerline Calculate the temperature drop from the centerline to the surface for a 2.5-cm-diameter rod having a thermal conductivity of if the rate of heat removal from its surface is 1.6 .arrow_forward2.38 The addition of aluminum fins has been suggested to increase the rate of heat dissipation from one side of an electronic device 1 m wide and 1 m tall. The fins are to be rectangular in cross section, 2.5 cm long and 0.25 cm thick, as shown in the figure. There are to be 100 fins per meter. The convection heat transfer coefficient, both for the wall and the fins, is estimated to be K. With this information determine the percent increase in the rate of heat transfer of the finned wall compared to the bare wall.arrow_forward1.10 A heat flux meter at the outer (cold) wall of a concrete building indicates that the heat loss through a wall of 10-cm thickness is . If a thermocouple at the inner surface of the wall indicates a temperature of 22°C while another at the outer surface shows 6°C, calculate the thermal conductivity of the concrete and compare your result with the value in Appendix 2, Table 11.arrow_forward
- 2.9 In a large chemical factory, hot gases at 2273 K are cooled by a liquid at 373 K with gas-side and liquid-side convection heat transfer coefficients of 50 and , respectively. The wall that separates the gas and liquid streams is composed of a 2-cm thick oxide layer on the gas side and a 4-cm thick slab of stainless steel on the liquid side. There is a contact resistance between the oxide layer and the steel of . Determine the rate of heat loss from hot gases through the composite wall to the liquid.arrow_forward2.44 To determine the thermal conductivity of a long, solid 2.5-cm-diameter rod, one half of the rod was inserted into a furnace while the other half was projecting into air at . After steady state had been reached, the temperatures at two points 7.6 cm apart were measured and found to be and , respectively. The heat transfer coefficient over the surface of the rod exposed to the air was estimated to be 22.7 . What is thermal conductivity of the rod?arrow_forward1.37 Mild steel nails were driven through a solid wood wall consisting of two layers, each 2.5-cm thick, for reinforcement. If the total cross-sectional area of the nails is 0.5% of the wall area, determine the unit thermal conductance of the composite wall and the percent of the total heat flow that passes through the nails when the temperature difference across the wall is 25°C. Neglect contact resistance between the wood layers.arrow_forward
- 2.2 A small dam, which is idealized by a large slab 1.2 m thick, is to be completely poured in a short Period of time. The hydration of the concrete results in the equivalent of a distributed source of constant strength of 100 W/m3. If both dam surfaces are at 16°C, determine the maximum temperature to which the concrete will be subjected, assuming steady-state conditions. The thermal conductivity of the wet concrete can be taken as 0.84 W/m K.arrow_forward2.55 A long, 1-cm-diameter electric copper cable is embedded in the center of a 25-cm-square concrete block. If the outside temperature of the concrete is 25oC and the rate of electrical energy dissipation in the cable is 150 W per meter length, determine temperatures at the outer surface and at the center of the cable.arrow_forwardThe handle of a ladle used for pouring molten lead is 30 cm long. Originally the handle was made of 1.9cm1.25cm mild steel bar stock. To reduce the grip temperature, it is proposed to form the handle of tubing 0.15 cm thick to the same rectangular shape. If the average heat transfer coefficient over the handle surface is 14 W/m K, estimate the reduction of the temperature at the grip in air at 21C.arrow_forward
- One end of a 0.3-m-long steel rod is connected to a wall at 204C. The other end is connected to a wall that is maintained at 93C. Air is blown across the rod so that a heat transfer coefficient of 17W/m2 K is maintained over the entire surface. If the diameter of the rod is 5 cm and the temperature of the air is 38C, what is the net rate of heat loss to the air?arrow_forwardThe interior wall of a large, commercial walk-in type meat freezer is covered under normal operating conditions with a 2-cm thick layer of ice. One day, a power outage cuts electricity to the refrigeration system of the freezer. Estimate the time required to melt this layer of ice if it has a mass density of 700kg/m3 and a latent heat of fusion of 334 kJ/kg. Consider the air temperature inside the freezer to be 20C with a heat transfer coefficient of 2W/m2K for convection from the freezer surface to air, and clearly state the assumptions made in your calculations.arrow_forward1.19 A cryogenic fluid is stored in a 0.3-m-diameter spherical container is still air. If the convection heat transfer coefficient between the outer surface of the container and the air is 6.8 , the temperature of the air is 27°C, and the temperature of the surface of the sphere is –183°C, determine the rate of heat transfer by convection.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning