Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780073398181
Author: Yunus A. Cengel Dr., Afshin J. Ghajar
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 9CP
Consider a round potato being baked in an oven. Would you model the heat transfer to the potato as one-, two-, or three-dimensional? Would the heat transfer be stead or transient? Also, which coordinate system would you use so solve this problem, and where would you place the origin? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Number 4
A food product wants to be produced in a small round shape (pellet) by freezing it in a water blast freezer freezer. Air
freezer operates at a temperature of -35 ° C. The initial product temperature is 25 ° C. The pellet has a diameter of
1.2 cm, and a density of 980 kg / m³. The initial freezing temperature is -2.5 ° C. The latent heat of freezing of the
product is 280 kJ / kg. The thermal conductivity of the frozen product is 1.9 W / (m ° C). The convective heat
transfer coefficient is 50 W / (m² K). Calculate the freeze time. identify :
a. tf = Answer in hour
Hi, can you solve this problem for me please ? The lesson name is Heat Transfer. I did not solve. Thanks!
Transient Heat Conduction
Cooking a Thanksgiving turkey is an art form and, if your skills in the
kitchen are like mine, it is sometimes more of a mystical, elusive art form. Thankfully, science also has much to
contribute in the kitchen as well as the laboratory.
Let us consider the change in temperature of a common, 20-lb holiday fowl as it is cooked in a convection oven.
To simplify the analysis, let's assume the bird can be modeled as a uniform sphere of radius 7.0 in. with a
specific heat of 3.53 kJ/kg-K. Moreover, the turkey will be assumed to have a uniform temperature, T,
throughout that will change with time as it is cooked according to the following relationship:
。 + (To - T∞)ept
T(t) = T∞ +
where To is the initial temperature of the turkey, T∞, is the oven temperature, V is the volume of the turkey, As is
the surface area of the turkey, and h is the convection coefficient for the scenario which is 11.3 W/m²-K. If the
oven is set to 325 °F and the initial temperature of the…
Chapter 2 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 2 - How does transient heat transfer from steady heat...Ch. 2 - Is heat transfer a scalar or a vector quantity?...Ch. 2 - Does a hear flux vector at a point P on an...Ch. 2 - From a heat transfer point of view, what is the...Ch. 2 - What is heat generation in a solid? Give examples.Ch. 2 - Heat generation is also referred to as energy...Ch. 2 - In order to size the compressor of a new...Ch. 2 - In order to determine the size of the heating...Ch. 2 - Consider a round potato being baked in an oven....Ch. 2 - Consider an egg being cooked in boiling water in a...
Ch. 2 - Prob. 11CPCh. 2 - Consider the cooking process of a roast beef in an...Ch. 2 - Consider heat loss from a 200-L cylindrical hot...Ch. 2 - Consider a cold canned drink left on a dinner...Ch. 2 - Heat flux meters use a very sensitive device know...Ch. 2 - Consider a large 3-cm-thick stainless steel plate...Ch. 2 - In a nuclear reactor, heat is generated uniformly...Ch. 2 - Prob. 18PCh. 2 - Prob. 19EPCh. 2 - Writer down the one-dimensional transient heat...Ch. 2 - Writer down the one-dimensional transient heat...Ch. 2 - Starting with an energy balance on rectangular...Ch. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Starting with an energy balance on a volume...Ch. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - What is a boundary condition? How many boundary...Ch. 2 - What is an initial condition? How many initial...Ch. 2 - What is a thermal symmetry boundary condition? How...Ch. 2 - How is the boundary condition on an insulated...Ch. 2 - It is claimed that the temperature profile in a...Ch. 2 - Why do we try to avoid the radiation boundary...Ch. 2 - Consider an aluminum pan used to cook stew on top...Ch. 2 - Prob. 42PCh. 2 - Prob. 43PCh. 2 - Heat is generated in a long wire of radius ro at a...Ch. 2 - Consider a long pipe of inner radius r1, Outer...Ch. 2 - A 2-kW resistance heater wire whose thermal...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Consider a spherical shell of inner radius r1,...Ch. 2 - A container consists of two spherical layers, A...Ch. 2 - A spherical metal ball of radius ro is heated in...Ch. 2 - Prob. 52PCh. 2 - It is stated that the temperature in a plane wall...Ch. 2 - Consider one-dimensional heat conduction through a...Ch. 2 - Consider a solid cylindrical rod whose side...Ch. 2 - Consider a solid cylindrical rod whose ends are...Ch. 2 - Prob. 57PCh. 2 - Prob. 58PCh. 2 - Prob. 59PCh. 2 - Consider a 20-cm-thick concrete plane wall...Ch. 2 - Prob. 61PCh. 2 - Prob. 62PCh. 2 - Prob. 63PCh. 2 - Prob. 64PCh. 2 - Prob. 65EPCh. 2 - Prob. 66PCh. 2 - Consider a chilled-water pipe of length L, inner...Ch. 2 - Prob. 68EPCh. 2 - Prob. 69PCh. 2 - Prob. 70PCh. 2 - Prob. 71PCh. 2 - Prob. 72PCh. 2 - Prob. 73PCh. 2 - Prob. 74PCh. 2 - Prob. 75PCh. 2 - Prob. 76PCh. 2 - Prob. 77PCh. 2 - Prob. 78CPCh. 2 - Does heat generation in a solid violate the first...Ch. 2 - Prob. 80CPCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - Prob. 83PCh. 2 - Prob. 84PCh. 2 - Consider a large 3-cm thick stainless steel plate...Ch. 2 - Prob. 86PCh. 2 - Prob. 87EPCh. 2 - Prob. 88PCh. 2 - Prob. 89PCh. 2 - Prob. 90PCh. 2 - Heat is generated uniformly at a rate of 3 kW per...Ch. 2 - Prob. 92PCh. 2 - Prob. 93PCh. 2 - Prob. 94PCh. 2 - Prob. 95PCh. 2 - Prob. 96PCh. 2 - Prob. 97PCh. 2 - Prob. 98PCh. 2 - Prob. 99PCh. 2 - Prob. 100PCh. 2 - Prob. 101PCh. 2 - Prob. 102PCh. 2 - Prob. 103PCh. 2 - Prob. 104CPCh. 2 - When the thermal conductivity of a medium varies...Ch. 2 - The temperature of a plane wall during steady...Ch. 2 - Consider steady one-dimensional heat conduction in...Ch. 2 - Prob. 108CPCh. 2 - Prob. 109PCh. 2 - Prob. 110PCh. 2 - Prob. 111PCh. 2 - Consider a plane wall of thickness L whose thermal...Ch. 2 - Prob. 113PCh. 2 - Prob. 114PCh. 2 - A pipe is used for transporting boiling water in...Ch. 2 - Prob. 116PCh. 2 - Prob. 117PCh. 2 - Consider a spherical shell of inner radius r1 and...Ch. 2 - Prob. 119PCh. 2 - A spherical tank is filled with ice slurry, where...Ch. 2 - Prob. 121CPCh. 2 - Prob. 122CPCh. 2 - Can a differential equation involve more than one...Ch. 2 - Prob. 124CPCh. 2 - Prob. 125CPCh. 2 - Prob. 126CPCh. 2 - Prob. 127CPCh. 2 - How is integation related to derivation?Ch. 2 - Prob. 129CPCh. 2 - Prob. 130CPCh. 2 - How is the order of a differential equation...Ch. 2 - How do you distinguish a linear differential...Ch. 2 - How do you recognize a linear homogeneous...Ch. 2 - How do differential equations with constant...Ch. 2 - What kinds of differential equations can be solved...Ch. 2 - Consider a third-order linear and homogeneous...Ch. 2 - A large plane wall, with a thickness L and a...Ch. 2 - Prob. 138PCh. 2 - Prob. 139EPCh. 2 - A spherical vessel has an inner radius r1 and an...Ch. 2 - Consider a short cylinder of radius r0 and height...Ch. 2 - Prob. 142PCh. 2 - Prob. 143PCh. 2 - Consider a 20-cm-thick large concrete plane wall...Ch. 2 - Prob. 145PCh. 2 - Prob. 146PCh. 2 - Prob. 147EPCh. 2 - Prob. 148PCh. 2 - In a manufacturing plant, a quench hardening...Ch. 2 - Consider a water pipe of length L=17m, inner...Ch. 2 - Prob. 151PCh. 2 - Consider a spherical reactor of 5-cm diameter...Ch. 2 - Consider a cylindrical sheel of length L, inner...Ch. 2 - A pipe is used for transporting boiling water in...Ch. 2 - A metal spherical tank is filled with chemicals...Ch. 2 - The heat conduction equation in a medium is given...Ch. 2 - Consider a medium in which the heat conduction...Ch. 2 - Consider a large plane wall of thicness L, thermal...Ch. 2 - A solar heat flux qs is incident on a sidewalk...Ch. 2 - A plane wall of thickness L is subjected to...Ch. 2 - Consider steady one-dimensional heat conduction...Ch. 2 - The conduction eqution boundary condition for an...Ch. 2 - Prob. 163PCh. 2 - Prob. 164PCh. 2 - The temperatures at the inner and outer surfaces...Ch. 2 - The thermal conductivity of a solid depends upon...Ch. 2 - Prob. 167PCh. 2 - Prob. 168PCh. 2 - Prob. 169PCh. 2 - Prob. 170PCh. 2 - Prob. 171PCh. 2 - Write essay on heat generation in nuc1e e1 rods....Ch. 2 - Write an interactive computer program to calculate...Ch. 2 - Prob. 174P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q1 Passage of an electric current through a long conducting rod of radius r; and thermal conductivity k, results in uniform volumetric heating at a rate of ġ. The conduct- ing rod is wrapped in an electrically nonconducting cladding material of outer radius r, and thermal conduc- tivity k, and convection cooling is provided by an adjoining fluid. Conducting rod, ġ, k, 11 To Čladding, ke For steady-state conditions, write appropriate forms of the heat equations for the rod and cladding. Express ap- propriate boundary conditions for the solution of these equations.arrow_forwardYou are asked to estimate the maximum human body temperature if the metabolic heat produced in your body could escape only by tissue conduction and later on the surface by convection. Simplify the human body as a cylinder of L=1.8 m in height and ro= 0.15 m in radius. Further, simplify the heat transfer process inside the human body as a 1-D situation when the temperature only depends on the radial coordinater from the centerline. The governing dT +q""=0 dr equation is written as 1 d k- r dr r = 0, dT dr =0 dT r=ro -k -=h(T-T) dr (k-0.5 W/m°C), ro is the radius of the cylinder (0.15 m), h is the convection coefficient at the skin surface (15 W/m² °C), Tair is the air temperature (30°C). q" is the average volumetric heat generation rate in the body (W/m³) and is defined as heat generated per unit volume per second. The 1-D (radial) temperature distribution can be derived as: T(r) = q"¹'r² qr qr. + 4k 2h + 4k +T , where k is thermal conductivity of tissue air (A) q" can be calculated…arrow_forward(a) Consider nodal configuration shown below. (a) Derive the finite-difference equations under steady-state conditions if the boundary is insulated. (b) Find the value of Tm,n if you know that Tm, n+1= 12 °C, Tm, n-1 = 8 °C, Tm-1, n = 10 °C, Ax = Ay = 10 mm, and k = = W 3 m. k . Ay m-1, n m, n | Δx=" m, n+1 m, n-1 The side insulatedarrow_forward
- Hi, kindly solve this problem and show the solution. Thank youarrow_forward(a) Consider nodal configuration shown below. (a) Derive the finite-difference equations under steady-state conditions if the boundary is insulated. (b) Find the value of Tm,n if you know that Tm, n+1= 12 °C, Tm, n-1 = 8 °C, Tm-1, n = 10 °C, Ax = Ay = 10 mm, and k = W 3 m. k Ay m-1, n 11- m2, 11 m, n+1 m, n-1 The side insulatedarrow_forwardA piece of beef steak 7 cm thick will be frozen in the freezer room -40 ° C. the product has a moisture content of 73%, a density of 970 kg / m cubic, and a thermal conductivity (frozen) of 1.1 W / (mK). Estimate the freezing time using the Plank equation. This product has an initial freezing temperature of -1.75 ° C, and the movement of air in the freezing room gives a convective transfer coefficient of 10 W / (m squared K)arrow_forward
- Let's say a 3.0 gram copper wafer is dropped from a height of 50.0 meters. If 60% of the potential energy lost in the drop could be converted to thermal energy used to heat the copper from an initial temperature of 25 degrees celsius, what would the final temperature of the copper wafer? Would the answer be different if the wafer has a mass greater than 3 grams? Note: the specific heat of copper is 387 J/(kg*K). The temperature is between 25.8 and 26.0 degrees celsius, yes the bigger the mass the greater the energy. O The temperature is between 25.6 and 25.8 celsius, answer does not depend on mass. O The temperature is between 25.0 and 25.2 celsius, answer does not depend on mass. O The temperature is 25.5 and of course the more mass something has the greater energy will be needed to raise the temperature. The temperature is 26.2 and if the mass is doubled so will be the change in temperature. O The temperature is 25.9 degrees celsius and the answer does not depend on mass. O The…arrow_forwardI want to answer all the questions by handwriting.arrow_forwardThis question about heat transfer/liquid Obtain the following basic equations modeling natural convection in the two-dimensional plane at steady conditions in terms of the given dimensionless quantities. Note: The buoyancy term in the y-momentum equation will be obtained based on dimensionless numbers. Second photo gives you what you need.arrow_forward
- Consider a round potato being baked in an oven. Would you model the heat transfer to the potato as one-, two-, or three-dimensional by writing of the differential equations? (Steady state and no heat generation) Would you model the heat transfer for steady or transient system consisting of heat generation by writing of the differential equations? If the system is transient and consisting no heat generation, write initial boundary condition for one-dimensional the differential equation for the potato?arrow_forwardA food product wants to be produced in a small round shape (pellet) by freezing it in a water blast freezer freezer. Air freezer operates at -25 ° C. The initial product temperature is 25 ° C. The pellet has a diameter of 0.5 cm, and a density of 980 kg / m3. The initial freezing temperature is -2.5 ° C. The latent heat of freezing of the product is 280 kJ / kg. The thermal conductivity of the frozen product is 1.9 W / (m ° C). The convective heat transfer coefficient is 50 W / (m? K). Calculate the freeze time.arrow_forwardonly find toparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license