EBK MANUFACTURING PROCESSES FOR ENGINEE
6th Edition
ISBN: 9780134425115
Author: Schmid
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.92P
To determine
The specific energy and actual energy expended.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A connecting rod is designed for hot forging in a printing die. The projected area of the part is 6500 mm2. The die design will cause burr formation during forging, so the area, including burr, will be 9000 mm2. The geometry of the part is complex. When heated, the work material flows at 75 MPa and does not tend to strain harden. Determine the maximum force required to execute the operation.
What are principal stresses?
A long, copper strip, 500 mm wide, 3 mm thick, was found to have 450 MPa yield stress. The strip is required
to be rolled in order to reduce its thickness. In the rolling process, the width remains practically unchanged
while the rolls apply pressure in the thickness direction. An additional tension of 150 kN is applied in the
longitudinal direction to assist the forming process. Ignoring the change in the width and any friction effects,
determine what roll pressure would just cause deformation:
according to the Von Mises yield criterion.
according to the Tresca yield criterion.
Material properties in the elastic range: E=75 GPa, v=0.4.
(a)
(b)
Chapter 2 Solutions
EBK MANUFACTURING PROCESSES FOR ENGINEE
Ch. 2 - Prob. 2.1QCh. 2 - Prob. 2.2QCh. 2 - Prob. 2.3QCh. 2 - Prob. 2.4QCh. 2 - Prob. 2.5QCh. 2 - Prob. 2.6QCh. 2 - Prob. 2.7QCh. 2 - Prob. 2.8QCh. 2 - Prob. 2.9QCh. 2 - Prob. 2.10Q
Ch. 2 - Prob. 2.11QCh. 2 - Prob. 2.12QCh. 2 - Prob. 2.13QCh. 2 - Prob. 2.14QCh. 2 - Prob. 2.15QCh. 2 - Prob. 2.16QCh. 2 - Prob. 2.17QCh. 2 - Prob. 2.18QCh. 2 - Prob. 2.19QCh. 2 - Prob. 2.20QCh. 2 - Prob. 2.21QCh. 2 - Prob. 2.22QCh. 2 - Prob. 2.23QCh. 2 - Prob. 2.24QCh. 2 - Prob. 2.25QCh. 2 - Prob. 2.26QCh. 2 - Prob. 2.27QCh. 2 - Prob. 2.28QCh. 2 - Prob. 2.29QCh. 2 - Prob. 2.30QCh. 2 - Prob. 2.31QCh. 2 - Prob. 2.32QCh. 2 - Prob. 2.33QCh. 2 - Prob. 2.34QCh. 2 - Prob. 2.35QCh. 2 - Prob. 2.36QCh. 2 - Prob. 2.37QCh. 2 - Prob. 2.38QCh. 2 - Prob. 2.39QCh. 2 - Prob. 2.40QCh. 2 - Prob. 2.41QCh. 2 - Prob. 2.42QCh. 2 - Prob. 2.43QCh. 2 - Prob. 2.44QCh. 2 - Prob. 2.45QCh. 2 - Prob. 2.46QCh. 2 - Prob. 2.47QCh. 2 - Prob. 2.48QCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.61PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71PCh. 2 - Prob. 2.72PCh. 2 - Prob. 2.73PCh. 2 - Prob. 2.74PCh. 2 - Prob. 2.75PCh. 2 - Prob. 2.76PCh. 2 - Prob. 2.78PCh. 2 - Prob. 2.79PCh. 2 - Prob. 2.80PCh. 2 - Prob. 2.81PCh. 2 - Prob. 2.82PCh. 2 - Prob. 2.83PCh. 2 - Prob. 2.84PCh. 2 - Prob. 2.85PCh. 2 - Prob. 2.86PCh. 2 - Prob. 2.87PCh. 2 - Prob. 2.88PCh. 2 - Prob. 2.89PCh. 2 - Prob. 2.90PCh. 2 - Prob. 2.91PCh. 2 - Prob. 2.92PCh. 2 - Prob. 2.93PCh. 2 - Prob. 2.94PCh. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - Prob. 2.97PCh. 2 - Prob. 2.98PCh. 2 - Prob. 2.99PCh. 2 - Prob. 2.100PCh. 2 - Prob. 2.101P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Using the tensile test simulation tool, a. generate the stress-strain curve for aluminum b. Indicate the following points in the stress-strain curve for aluminum and give the corresponding values: limit of proportionality elastic limit 0.2% offset yield stress (include the graph illustrating how this was determined) ultimate stress fracture stress c. Calculate modulus of elasticity. d. compare aluminum with nylon (include the related graph) and answer the following: Which has higher tensile strength? Provide the necessary values to support the answer. Which is stiffer? Support your answer with calculations.arrow_forwardI need the answer as soon as possiblearrow_forwardAn aluminum specimen subjected to the Brinell hardness test, the indenter and indentation diameters are 14 mm & 4.22 mm respectively. Determine the surface area of indentation, Also, determine the force applied on the aluminum specimen, if Brinell hardness value is 667. Solution: 1. The surface area of Indentation in mm2 is 2. The force applied in N isarrow_forward
- Select all answers that are correct. Which of the following statements explain why solids have shapes and fluids do not? O A fluid develops a finite deformation when subjected to a shear stress a A fluid deforms continuously when subjected to a shear stress A solid develops a finite deformation when subjected to a shear stress O A solid deforms continuously when subjected to a shear stressarrow_forward2. A sheet metal whose Poisson's ratio is 0.29, coefficient of thermal expansion is 10 ×10-6 /°C, E with the thickness of 5 mm, width 0.6 m and length 3 m is being stretched uniformly by a force of 240000 N along its width. Its initial temperature is 360°C and after the process is finished, the temperature is cooled down to 280°C, determine the percentage volume change of the sheet from the initial, unstressed state. 100 GPa, 3 m ►240000 N 0.6 marrow_forwardI need the answer quicklyarrow_forward
- Identify 3 car’s components in general, one subjected to tension, the 2nd to compression, and the 3rd component subjected to a shear force. Find a suitable factor of safety of your components and calculate the working stresses and strains for each of your components. Assume values to do the caculations. How does an increase in operational temperature affect your results?arrow_forwardParvin bhaiarrow_forwardhow did we go from 9.3kN to 7.5 kN for the load applied?arrow_forward
- please solve it now pleasearrow_forwardThey had given wings with the cross sectional area of 10m^2 and answer this questions 1a) Describe all the various forces and stresses experienced by the aircraft wing. 1b) Compare how the various stresses, vary on the ground versus in flight. 2) Sketch the stress-strain diagram and indicate the position of the wing on it. Explain. 3) Describe the important material properties of the wing. Explain. 4) Draw and describe the Shear Force Diagram, from the wing root to the wing tip, as shown in the diagram. 5) The ultimate shear stress of the wing material is 20 kPa. Describe how the safety factor varies, from the wing root to the wing tip. 6) Draw and describe the Bending Moment Diagram, from the wing root to the wing tip, as shown in the diagram. Below picture had list the formula I had learnt so fararrow_forwardTensile test is a method to investigate the elasticity of a material. A test specimen is placed between two clamps and these clamps will move in opposite directions, hence straining the test specimen. This experiment will yield a stress-strain curve that shows each of the stages of the specimen for every load is applied. With an aid of sketching diagrams, describe the stages that the specimen experiences before it breaks, and relate it with the stress-strain curve. It is expected that each stage comes with a sketching of the specimen and explanation of the current stage.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License