EBK MANUFACTURING PROCESSES FOR ENGINEE
6th Edition
ISBN: 9780134425115
Author: Schmid
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.23Q
To determine
The role that friction play in a hardness test and also explain whether the friction between the material and indenter affect the hardness test or not.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Small and medium industries could not have afforded to buy an expensive universal
testing machine to test for the performance of their product under tension loading.
Therefore, they have ended buying a cheaper hardness tester for the purpose.
Identify the way of how the tensile strength is determined for their product.
i need the answer quickly
A copper specimen subjected to the Brinell Hardness Test using hardened steel ball indenter of diameter 12 mm and the indentation diameter 3.87 mm is measured using an optical magnifying lens with a ruler. Draw the Brinell Hardness Test setup neatly and determine the force applied on the specimen. Take Brinell Hardness Number for copper as 807.
Calculate:
1-Surface Area of Indentation (in mm2)
2-Applied Force (in N)
Chapter 2 Solutions
EBK MANUFACTURING PROCESSES FOR ENGINEE
Ch. 2 - Prob. 2.1QCh. 2 - Prob. 2.2QCh. 2 - Prob. 2.3QCh. 2 - Prob. 2.4QCh. 2 - Prob. 2.5QCh. 2 - Prob. 2.6QCh. 2 - Prob. 2.7QCh. 2 - Prob. 2.8QCh. 2 - Prob. 2.9QCh. 2 - Prob. 2.10Q
Ch. 2 - Prob. 2.11QCh. 2 - Prob. 2.12QCh. 2 - Prob. 2.13QCh. 2 - Prob. 2.14QCh. 2 - Prob. 2.15QCh. 2 - Prob. 2.16QCh. 2 - Prob. 2.17QCh. 2 - Prob. 2.18QCh. 2 - Prob. 2.19QCh. 2 - Prob. 2.20QCh. 2 - Prob. 2.21QCh. 2 - Prob. 2.22QCh. 2 - Prob. 2.23QCh. 2 - Prob. 2.24QCh. 2 - Prob. 2.25QCh. 2 - Prob. 2.26QCh. 2 - Prob. 2.27QCh. 2 - Prob. 2.28QCh. 2 - Prob. 2.29QCh. 2 - Prob. 2.30QCh. 2 - Prob. 2.31QCh. 2 - Prob. 2.32QCh. 2 - Prob. 2.33QCh. 2 - Prob. 2.34QCh. 2 - Prob. 2.35QCh. 2 - Prob. 2.36QCh. 2 - Prob. 2.37QCh. 2 - Prob. 2.38QCh. 2 - Prob. 2.39QCh. 2 - Prob. 2.40QCh. 2 - Prob. 2.41QCh. 2 - Prob. 2.42QCh. 2 - Prob. 2.43QCh. 2 - Prob. 2.44QCh. 2 - Prob. 2.45QCh. 2 - Prob. 2.46QCh. 2 - Prob. 2.47QCh. 2 - Prob. 2.48QCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.61PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71PCh. 2 - Prob. 2.72PCh. 2 - Prob. 2.73PCh. 2 - Prob. 2.74PCh. 2 - Prob. 2.75PCh. 2 - Prob. 2.76PCh. 2 - Prob. 2.78PCh. 2 - Prob. 2.79PCh. 2 - Prob. 2.80PCh. 2 - Prob. 2.81PCh. 2 - Prob. 2.82PCh. 2 - Prob. 2.83PCh. 2 - Prob. 2.84PCh. 2 - Prob. 2.85PCh. 2 - Prob. 2.86PCh. 2 - Prob. 2.87PCh. 2 - Prob. 2.88PCh. 2 - Prob. 2.89PCh. 2 - Prob. 2.90PCh. 2 - Prob. 2.91PCh. 2 - Prob. 2.92PCh. 2 - Prob. 2.93PCh. 2 - Prob. 2.94PCh. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - Prob. 2.97PCh. 2 - Prob. 2.98PCh. 2 - Prob. 2.99PCh. 2 - Prob. 2.100PCh. 2 - Prob. 2.101P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- QUESTION ONE (a) Distinguish between physical and mechanical properties of materials. Give two examples of each. (b) Explain why in a stress versus strain curve, the plastic portion of the graph after necking tends to drop (ie the force drops) despite that the tension is increasing. (c) A tensile test uses a copper test specimen that has a gauge length of 80 mm and a di.ameter of 16 mm. During the test, the specimen yields under a load of 9,600 N. The corresponding gauge length is 80.24 mm. The maximum load reached is 148,000 N at a gauge length of 94.2 mm, while fracture happens at a load of 12,800 N and a gauge length of 102 6 mm Determine the following: (i) Modulus of elasticity E (ii) Yield strength Oy (iii) Fracture strength, ơt (iv) Tensile strength OTs. 1arrow_forwardWhy hardness test needs to perform in engineering practice?arrow_forwardTensile test is a method to investigate the elasticity of a material. A test specimen is placed between two clamps and these clamps will move in opposite directions, hence straining the test specimen. This experiment will yield a stress-strain curve that shows each of the stages of the specimen for every load is applied. With an aid of sketching diagrams, describe the stages that the specimen experiences before it breaks, and relate it with the stress-strain curve. It is expected that each stage comes with a sketching of the specimen and explanation of the current stage.arrow_forward
- 7. Explain the major and minor loads used in the Rockwell hardness test. Which of these loads did we manually apply?arrow_forwardIf material A is observed to have twice the modulus of rigidity but the same Poisson's ratio and yield shear stress than that of material B, then which of the following comparisons is always true? Select one: Material A can resist higher normal stresses than material B can before permanent normal deformations occur. O b For the same load that brings the materials to plastic behavior, material A will experience larger permanent shear deformations than material B. Material A can resist higher shear stresses than material B before permanent shear deformations occur. O d. Material B is has a lower ultimate stress than material A.arrow_forwardat least 3ways to identifyarrow_forward
- Briefly comment on the values obtained for the Elastic Modulus, Yield Strength, Ultimate Strength and Toughness of the test specimen as compared to values of various comparable materials found in the literature. Is the test material comparatively strong? Is it stiff? Is it tough? Yield strength is 186Mpa, elastic modulus is 44.8GPa And the ultimate strength is 238.7mpaarrow_forwardThe data shown in the table below were obtained from a tensile test of high-strength steel. The test specimen had a diameter of 13mm and a gage length of 50mm. At fracture, the elongation between the gage marks was 3.0mm and the minimum diameter was 10.7mm. Plot the conventional stress-strain curve for the steel and determine the propotional limit, modulus of elasticity (i.e the slope of the initial part of the stress-strain curve), yield stress at 0.1% offset, ultimate stress, percent elongation in 50mm, and percent reduction area. TENSILE-TEST DATA Load(kN) Elongation(mm) 5 0.005 10 0.015 30 0.048 50 0.084 60 0.099 64.5 0.109 67.0 0.119 68.0 0.137 69.0 0.160 70.0 0.229 72.0 0.259 76.0 0.330 84.0 0.584 92.0 0.853 100.0 1.288 112.0 2.814 113.0 Fracturearrow_forwardi need the answer quicklyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY