EBK MANUFACTURING PROCESSES FOR ENGINEE
6th Edition
ISBN: 9780134425115
Author: Schmid
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.54P
To determine
Show that ultimate tensile strength is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
True stress-strain
Engineering stress-strain
strain
Calculate the engineering ultimate tensile
strength of a material whose strength
coefficient is 535 MPa and of a tensile-test
specimen that necks at a true strain of 0.55.
200 MPa
O 267 MPa
O 244 MPa
O 222 MPa
stress
For some metal alloy, a true stress 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of this material elongate when a true stress of 418 MPa (60630 psi) is applied if the original length is 500 mm (19.69in) ? Assume a value of 0.22 for the strain- hardening exponent, n
The data below are for a thin steel wire suitable for use as a guitar string.
Ultimate tensile stress: 1.8 x 109 Pa
Young Modulus: 2.2 x 1011 Pa
Cross-sectional area: 2.0 x 10-7 m2
In a tensile test, a specimen of the wire, of original length 1.5 m, is stretched until it breaks. Assuming the wire obeys Hooke’s law throughout, calculate the extension of the specimen immediately before breaking.
Chapter 2 Solutions
EBK MANUFACTURING PROCESSES FOR ENGINEE
Ch. 2 - Prob. 2.1QCh. 2 - Prob. 2.2QCh. 2 - Prob. 2.3QCh. 2 - Prob. 2.4QCh. 2 - Prob. 2.5QCh. 2 - Prob. 2.6QCh. 2 - Prob. 2.7QCh. 2 - Prob. 2.8QCh. 2 - Prob. 2.9QCh. 2 - Prob. 2.10Q
Ch. 2 - Prob. 2.11QCh. 2 - Prob. 2.12QCh. 2 - Prob. 2.13QCh. 2 - Prob. 2.14QCh. 2 - Prob. 2.15QCh. 2 - Prob. 2.16QCh. 2 - Prob. 2.17QCh. 2 - Prob. 2.18QCh. 2 - Prob. 2.19QCh. 2 - Prob. 2.20QCh. 2 - Prob. 2.21QCh. 2 - Prob. 2.22QCh. 2 - Prob. 2.23QCh. 2 - Prob. 2.24QCh. 2 - Prob. 2.25QCh. 2 - Prob. 2.26QCh. 2 - Prob. 2.27QCh. 2 - Prob. 2.28QCh. 2 - Prob. 2.29QCh. 2 - Prob. 2.30QCh. 2 - Prob. 2.31QCh. 2 - Prob. 2.32QCh. 2 - Prob. 2.33QCh. 2 - Prob. 2.34QCh. 2 - Prob. 2.35QCh. 2 - Prob. 2.36QCh. 2 - Prob. 2.37QCh. 2 - Prob. 2.38QCh. 2 - Prob. 2.39QCh. 2 - Prob. 2.40QCh. 2 - Prob. 2.41QCh. 2 - Prob. 2.42QCh. 2 - Prob. 2.43QCh. 2 - Prob. 2.44QCh. 2 - Prob. 2.45QCh. 2 - Prob. 2.46QCh. 2 - Prob. 2.47QCh. 2 - Prob. 2.48QCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.61PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71PCh. 2 - Prob. 2.72PCh. 2 - Prob. 2.73PCh. 2 - Prob. 2.74PCh. 2 - Prob. 2.75PCh. 2 - Prob. 2.76PCh. 2 - Prob. 2.78PCh. 2 - Prob. 2.79PCh. 2 - Prob. 2.80PCh. 2 - Prob. 2.81PCh. 2 - Prob. 2.82PCh. 2 - Prob. 2.83PCh. 2 - Prob. 2.84PCh. 2 - Prob. 2.85PCh. 2 - Prob. 2.86PCh. 2 - Prob. 2.87PCh. 2 - Prob. 2.88PCh. 2 - Prob. 2.89PCh. 2 - Prob. 2.90PCh. 2 - Prob. 2.91PCh. 2 - Prob. 2.92PCh. 2 - Prob. 2.93PCh. 2 - Prob. 2.94PCh. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - Prob. 2.97PCh. 2 - Prob. 2.98PCh. 2 - Prob. 2.99PCh. 2 - Prob. 2.100PCh. 2 - Prob. 2.101P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A steel specimen 12mm diameter has gauge length 50mm. the steel specimen had tested via tensile test under maximum load 66KN with elongation 7.5mm, and the yield load of this specimen is 15KN with elongation 2.4mm. Calculate: 1- The engineering ultimate stress (ultimate tensile strength), and engineering strain at this point. 2- The engineering stress and strain at yield point. 3- The modulus of elasticity, and the modulus of resilience. 4- The final or fracture strain of a steel specimen, if you know that the final length of specimen after testing is 58.5mm. 5- The true stress and strain for ultimate point.arrow_forwardA steel specimen 12mm diameter has gauge length 50mm. the steel specimen had tested via tensile test under maximum load 66KN with elongation 7.5mm, and the yield load of this specimen is 15KN with elongation 2.4mm. Calculate: 1- The engineering ultimate stress (ultimate tensile strength), and engineering strain at this point. 2- The engineering stress and strain at yield point. 3- The modulus of elasticity, and the modulus of resilience. 4- The final or fracture strain of a steel specimen, if you know that the final length of specimen after testing is 58.5mm. 5- The true stress and strain for ultimate point. any four point sirarrow_forwardFor a given material, the ratio of lateral strain to linear strain is observed as 0.2 when axially loaded. What will be Poisson’s ratio of that material? Take diameter of the specimen is 50mm and Length=1m. a. 0.1 b. 0.2 c. 0.15 d. 5arrow_forward
- A tensile specimen of cylindrical brass cartridge subjected to a load of 150 kg has a cross section diameter of 2.5 mm and a gage length of 23 mm. Calculate the Young's modulus and engineering strain that occurred during a test if the distance between gage markings is 24.5 mm after the test.arrow_forwardA steel rod is subjected to a force of 5 kN. The initial length of the rod is 690 mm and after elongation its length is equal to 700 mm. Estimate engineering and true strain.arrow_forwardtensile test is performed to determine the parameters strength constant C and strainrate sensitivity exponent m for a certain metal. The temperature at which the test is performed = 500°C. At a strain rate = 10/s, the stress is measured at 140 MPa; and at a strain rate = 150/s, the stress = 280 MPa. (a) Determine C and m. (b) If the temperature were 600°C, what changes would you expect in the values of C and m?arrow_forward
- Pravinbhaiarrow_forwardA cylindrical specimen of brass that has a diameter of 21 mm, a tensile modulus of 122 GPa, and a Poisson’s ratio of 0.37 is pulled in tension with force of 38704 N. If the deformation is totally elastic, what is the strain experienced by the specimen?arrow_forwardThe strength coefficient and strain-hardening exponent of a certain test metal are 750 MPa and 0.25, respectively. A cylindrical specimen of the metal with starting diameter = 75 mm is stretched. If the average flow stress on the part is 450 MPa determine the final diameter of the specimen.arrow_forward
- A torsion test shows that the shear modulus of an aluminum specimen is 27.6 GPa. When the same specimen is used in a tensile test, the modulus of elasticity is found to be 73.2 GPa. Find the Poisson’s ratio for the specimen.arrow_forwardFrom the tensile stress-strain behavior for the brass specimen shown in Figure 6.12, determine the following: (a) The modulus of elasticity (b) The yield strength at a strain offset of 0.002 (c) The maximum load that can be sustained by a cylindrical specimen hav- ing an original diameter of 12.8 mm (0.505 in.) (d) The change in length of a specimen originally 250 mm (10 in.) long that is subjected to a tensile stress of 345 MPa (50,000 psi)arrow_forwardA sample is subjected to a 33.5 kN tensile load. This results in an elastic deformation only (engineering strain = 0.00405). The length of the material is 12.7 mm. If the material has a rectangular cross-section, calculate the width in mm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY