EBK MANUFACTURING PROCESSES FOR ENGINEE
6th Edition
ISBN: 9780134425115
Author: Schmid
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.32Q
(a)
To determine
Whether the volume of specimen change as specimen subjected to state of uniaxial compressive stress or not.
(b)
To determine
Whether the volume of specimen change as specimen subjected to state of uniaxial tensile stress or not.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
From the tensile stress-strain behavior for the brass specimen shown in
Figure 6.12, determine the following:
(a) The modulus of elasticity
(b) The yield strength at a strain offset of 0.002
(c) The maximum load that can be sustained by a cylindrical specimen hav-
ing an original diameter of 12.8 mm (0.505 in.)
(d) The change in length of a specimen originally 250 mm (10 in.) long that
is subjected to a tensile stress of 345 MPa (50,000 psi)
A specimen is originally 300 mm long, has a
diameter of 14 mm, and is subjected to a force of
2 kN. When the force is increased from 2 kN to
8 kN, the specimen elongates 0.225 mm.
Part A
Determine the modulus of elasticity for the material if it remains linear elastic.
Express your answer to three significant figures and include the appropriate units.
Whats the correct answer for this please ?
Chapter 2 Solutions
EBK MANUFACTURING PROCESSES FOR ENGINEE
Ch. 2 - Prob. 2.1QCh. 2 - Prob. 2.2QCh. 2 - Prob. 2.3QCh. 2 - Prob. 2.4QCh. 2 - Prob. 2.5QCh. 2 - Prob. 2.6QCh. 2 - Prob. 2.7QCh. 2 - Prob. 2.8QCh. 2 - Prob. 2.9QCh. 2 - Prob. 2.10Q
Ch. 2 - Prob. 2.11QCh. 2 - Prob. 2.12QCh. 2 - Prob. 2.13QCh. 2 - Prob. 2.14QCh. 2 - Prob. 2.15QCh. 2 - Prob. 2.16QCh. 2 - Prob. 2.17QCh. 2 - Prob. 2.18QCh. 2 - Prob. 2.19QCh. 2 - Prob. 2.20QCh. 2 - Prob. 2.21QCh. 2 - Prob. 2.22QCh. 2 - Prob. 2.23QCh. 2 - Prob. 2.24QCh. 2 - Prob. 2.25QCh. 2 - Prob. 2.26QCh. 2 - Prob. 2.27QCh. 2 - Prob. 2.28QCh. 2 - Prob. 2.29QCh. 2 - Prob. 2.30QCh. 2 - Prob. 2.31QCh. 2 - Prob. 2.32QCh. 2 - Prob. 2.33QCh. 2 - Prob. 2.34QCh. 2 - Prob. 2.35QCh. 2 - Prob. 2.36QCh. 2 - Prob. 2.37QCh. 2 - Prob. 2.38QCh. 2 - Prob. 2.39QCh. 2 - Prob. 2.40QCh. 2 - Prob. 2.41QCh. 2 - Prob. 2.42QCh. 2 - Prob. 2.43QCh. 2 - Prob. 2.44QCh. 2 - Prob. 2.45QCh. 2 - Prob. 2.46QCh. 2 - Prob. 2.47QCh. 2 - Prob. 2.48QCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.61PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71PCh. 2 - Prob. 2.72PCh. 2 - Prob. 2.73PCh. 2 - Prob. 2.74PCh. 2 - Prob. 2.75PCh. 2 - Prob. 2.76PCh. 2 - Prob. 2.78PCh. 2 - Prob. 2.79PCh. 2 - Prob. 2.80PCh. 2 - Prob. 2.81PCh. 2 - Prob. 2.82PCh. 2 - Prob. 2.83PCh. 2 - Prob. 2.84PCh. 2 - Prob. 2.85PCh. 2 - Prob. 2.86PCh. 2 - Prob. 2.87PCh. 2 - Prob. 2.88PCh. 2 - Prob. 2.89PCh. 2 - Prob. 2.90PCh. 2 - Prob. 2.91PCh. 2 - Prob. 2.92PCh. 2 - Prob. 2.93PCh. 2 - Prob. 2.94PCh. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - Prob. 2.97PCh. 2 - Prob. 2.98PCh. 2 - Prob. 2.99PCh. 2 - Prob. 2.100PCh. 2 - Prob. 2.101P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A cylindrical specimen of aluminum having a diameter of 19 mm (0.75 in.) and length of 200 mm(8.0 in.) is deformed elastically in tension with a force of 48,800 N (11,000 lbf). Using the data inTable 6.1, determine the following:(a) The amount by which this specimen will elongate in the direction of the applied stress.(b) The change in diameter of the specimen. Will the diameter increase or decrease? (Complete Answer, Thank you)arrow_forwardThe following data are obtained from a tensile test of a copper specimen. - The load at the yield point is 158 kN. - Length of the specimen is 26 mm. - The yield strength is 75 kN/mm?. - The percentage of elongation is 40 %. Determine the following (v) Final diameter if the percentage of reduction in area is 21 %. Final Area of the Specimen at Fracture (in mm) Final Diameter of the Specimen after Fracture (in mm)arrow_forwardConsider an aluminum specimen with a diameter of 10 mm and a length of 1 point 3 m. A force of 3000 N is applied along the axis of each specimen. Assuming that the deformation is elastic, estimate the elongation of the specimen. Aluminum (E-70 GPa)arrow_forward
- Tensile test is a method to investigate the elasticity of a material. A test specimen is placed between two clamps and these clamps will move in opposite directions, hence straining the test specimen. This experiment will yield a stress-strain curve that shows each of the stages of the specimen for every load is applied. With an aid of sketching diagrams, describe the stages that the specimen experiences before it breaks, and relate it with the stress-strain curve. It is expected that each stage comes with a sketching of the specimen and explanation of the current stage.arrow_forwardstress-strain behavior for the brass specimen shown in Figure 6.12, determine the following: (a) The modulus of elasticity (b) The yield strength at a strain offset of 0.002 (c) The maximum load that can be sustained by a cylindrical specimen hav- ing an original diameter of 12.8 mm (0.505 in.) (d) The change in length of a specimen originally 250 mm (10 in.) long that is subjected to a tensile stress of 345 MPa (50,000 psi)arrow_forwardWhich of the following is an accurate statement? (A) The lateral strain is greater than the axial strain. (B) The axial strain is greater than the lateral strain. (C) The lateral is twice that of axial strain. (D) The axial strain is twice that of the lateral strain.arrow_forward
- Stress Strain-Behavior A specimen of aluminum having a rectangular cross section 10 mm × 12.7 mm(0.4 in.× 0.5 in. ) is pulled in tension with 35,500 N (8000 lbf) force, producing onlyelastic deformation. Calculate the resulting strain.arrow_forwardA specimen of aluminum having a rectangular cross section 9.6 mm × 13.0 mm (0.3780 in. × 0.5118 in.) is pulled in tension with 35800 N (8048 lbf) force, producing only elastic deformation. The elastic modulus for aluminum is 69 GPa (or 10 × 106 psi). Calculate the resulting strain. Enter your answer in accordance to the question statementarrow_forwardNeed help with this Engineering of Materialsarrow_forward
- A specimen is originally 300 mm long, has a diameter of 14 mm, and is subjected to a force of 2kN. When the force is increased from 2kN to 8kN, the specimen elongates 0.225 mm. Determine the modulus of elasticity for the material if it remains linear elastic. Express the answer to three significant figures and include the appropriate units.arrow_forwardA ductile specimen that has an initial length of 10 cm is tested under uniaxial loading. If the test is under tension and the nominal strain is 21.9%, please calculate the true strain in %.arrow_forwardMake sure you do the sketcharrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY