EBK MANUFACTURING PROCESSES FOR ENGINEE
EBK MANUFACTURING PROCESSES FOR ENGINEE
6th Edition
ISBN: 9780134425115
Author: Schmid
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 2, Problem 2.61P

(a)

To determine

The work done in frictionless compression of solid cylinder of 1100-O Aluminum.

(a)

Expert Solution
Check Mark

Answer to Problem 2.61P

The work done in the frictionless compression of the cylinder is W=1562Nm

Explanation of Solution

Calculation:

The work done in frictionless compression of solid cylinder can be calculated by multiplying the specific energy and the volume of the cylinder.

For calculating the value of specific energy, the value of true strain is also required. The reduction in the height of the cylinder is 75%, thus the final height of the cylinder is 10 mm.

The value of true strain can be calculated as

  ε=ln(4010)ε=1.386

The value of bulk modulus and n for the 1100-O Al are

  K=180MPan=0.20

The specific energy can be calculated as

  u=Kεn+1n+1u=(180)(1.386)1.21.2u=222MN/m3

Now, the volume of the cylinder is

  V=πr2lV=π(0.0075)2(0.04)V=7.069×106m3

Now, the work done is

  W=u×VW=222×7.069NmW=1562Nm

Conclusion: Thus, the work done in the frictionless compression of the cylinder is W=1562Nm

(b)

To determine

The work done in frictionless compression of solid cylinder of annealed copper.

(b)

Expert Solution
Check Mark

Answer to Problem 2.61P

The work done in the frictionless compression of the cylinder is W=2391Nm

Explanation of Solution

Calculation:

The work done in frictionless compression of solid cylinder can be calculated by multiplying the specific energy and the volume of the cylinder.

For calculating the value of specific energy, the value of true strain is also required. The reduction in the height of the cylinder is 75%, thus the final height of the cylinder is 10 mm.

The value of true strain can be calculated as

  ε=ln(4010)ε=1.386

The value of bulk modulus and n for the annealed copper are

  K=315MPan=0.54

The specific energy can be calculated as

  u=Kεn+1n+1u=(315)(1.386)1.541.54u=338MN/m3

Now, the volume of the cylinder is

  V=πr2lV=π(0.0075)2(0.04)V=7.069×106m3

Now, the work done is

  W=u×VW=338×7.069NmW=2391Nm

Conclusion: Thus, the work done in the frictionless compression of the cylinder is W=2391Nm

(c)

To determine

The work done in frictionless compression of solid cylinder of annealed 304 stainless steels.

(c)

Expert Solution
Check Mark

Answer to Problem 2.61P

The work done in the frictionless compression of the cylinder is W=10,808Nm

Explanation of Solution

Calculation:

The work done in frictionless compression of solid cylinder can be calculated by multiplying the specific energy and the volume of the cylinder.

For calculating the value of specific energy, the value of true strain is also required. The reduction in the height of the cylinder is 75%, thus the final height of the cylinder is 10 mm.

The value of true strain can be calculated as

  ε=ln(4010)ε=1.386

The value of bulk modulus and n for the annealed 304 stainless steel are

  K=1300MPan=0.30

The specific energy can be calculated as

  u=Kεn+1n+1u=(1300)(1.386)1.31.3u=1529MN/m3

Now, the volume of the cylinder is

  V=πr2lV=π(0.0075)2(0.04)V=7.069×106m3

Now, the work done is

  W=u×VW=1529×7.069NmW=10,808Nm

Conclusion: Thus, the work done in the frictionless compression of the cylinder is W=10,808Nm

(d)

To determine

The work done in frictionless compression of solid cylinder of annealed 70-30 brass.

(d)

Expert Solution
Check Mark

Answer to Problem 2.61P

The work done in the frictionless compression of the cylinder is W=6908Nm

Explanation of Solution

Calculation:

The work done in frictionless compression of solid cylinder can be calculated by multiplying the specific energy and the volume of the cylinder.

For calculating the value of specific energy, the value of true strain is also required. The reduction in the height of the cylinder is 75%, thus the final height of the cylinder is 10 mm.

The value of true strain can be calculated as

  ε=ln(4010)ε=1.386

The value of bulk modulus and n for the annealed 70-30 brass are

  K=895MPan=0.49

The specific energy can be calculated as

  u=Kεn+1n+1u=(895)(1.386)1.491.49u=977MN/m3

Now, the volume of the cylinder is

  V=πr2lV=π(0.0075)2(0.04)V=7.069×106m3

Now, the work done is

  W=u×VW=977×7.069NmW=6908Nm

Conclusion: Thus, the work done in the frictionless compression of the cylinder is W=6908Nm

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A distillation column with a total condenser and a partial reboiler is separating ethanol andwater at 1.0 atm. Feed is 0.32 mol fraction ethanol and it enters as a saturated liquid at 100mol/s on the optimum plate. The distillate product is a saturated liquid with 80 mol% ethanol.The condenser removes 5615 kW. The bottoms product is 0.05 mol fraction ethanol. AssumeCMO is valid.(a) Find the number of equilibrium stages for this separation. [6 + PR](b) Find how much larger the actual reflux ratio, R, used is than Rmin, i.e. R/Rmin. [3]Note: the heats of vaporization of ethanol and water are λe = 38.58 ௞௃௠௢௟ and λw = 40.645 ௞௃௠௢௟
We have a feed that is a binary mixture of methanol and water (60.0 mol% methanol) that issent to a system of two flash drums hooked together. The vapor from the first drum is cooled,which partially condenses the vapor, and then is fed to the second flash drum. Both drumsoperate at 1.0 atm and are adiabatic. The feed to the first drum is 1000 kmol/hr. We desire aliquid product from the first drum that is 35.0 mol% methanol. The second drum operates at afraction vaporized of (V/F)2 = 0.25.(a) Find the liquid flow rate leaving the first flash drum, L1 (kmol/hr). [286 kmol/hr](b) Find the vapor composition leaving the second flash drum, y2. [0.85]
= The steel curved bar shown has rectangular cross-section with a radial height h = 6 mm and thickness b = 4mm. The radius of the centroidal axis is R = 80 mm. A force P = 10 N is applied as shown. Assume the steel modulus of 207,000 MPa and G = 79.3(103) MPa, repectively. elasticity and shear modulus E = Find the vertical deflection at point B. Use Castigliano's method for a curved flexural member and since R/h > 10, neglect the effect of shear and axial load, thereby assuming that deflection is due to merely the bending moment. Note the inner and outer radii of the curves bar are: r = 80 + ½ (6) = 83 mm, r₁ = 80 − ½ (6) = 77 mm 2 2 Sπ/2 sin² 0 d = √π/² cos² 0 d0 = Π 0 4 大 C R B P

Chapter 2 Solutions

EBK MANUFACTURING PROCESSES FOR ENGINEE

Ch. 2 - Prob. 2.11QCh. 2 - Prob. 2.12QCh. 2 - Prob. 2.13QCh. 2 - Prob. 2.14QCh. 2 - Prob. 2.15QCh. 2 - Prob. 2.16QCh. 2 - Prob. 2.17QCh. 2 - Prob. 2.18QCh. 2 - Prob. 2.19QCh. 2 - Prob. 2.20QCh. 2 - Prob. 2.21QCh. 2 - Prob. 2.22QCh. 2 - Prob. 2.23QCh. 2 - Prob. 2.24QCh. 2 - Prob. 2.25QCh. 2 - Prob. 2.26QCh. 2 - Prob. 2.27QCh. 2 - Prob. 2.28QCh. 2 - Prob. 2.29QCh. 2 - Prob. 2.30QCh. 2 - Prob. 2.31QCh. 2 - Prob. 2.32QCh. 2 - Prob. 2.33QCh. 2 - Prob. 2.34QCh. 2 - Prob. 2.35QCh. 2 - Prob. 2.36QCh. 2 - Prob. 2.37QCh. 2 - Prob. 2.38QCh. 2 - Prob. 2.39QCh. 2 - Prob. 2.40QCh. 2 - Prob. 2.41QCh. 2 - Prob. 2.42QCh. 2 - Prob. 2.43QCh. 2 - Prob. 2.44QCh. 2 - Prob. 2.45QCh. 2 - Prob. 2.46QCh. 2 - Prob. 2.47QCh. 2 - Prob. 2.48QCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.61PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71PCh. 2 - Prob. 2.72PCh. 2 - Prob. 2.73PCh. 2 - Prob. 2.74PCh. 2 - Prob. 2.75PCh. 2 - Prob. 2.76PCh. 2 - Prob. 2.78PCh. 2 - Prob. 2.79PCh. 2 - Prob. 2.80PCh. 2 - Prob. 2.81PCh. 2 - Prob. 2.82PCh. 2 - Prob. 2.83PCh. 2 - Prob. 2.84PCh. 2 - Prob. 2.85PCh. 2 - Prob. 2.86PCh. 2 - Prob. 2.87PCh. 2 - Prob. 2.88PCh. 2 - Prob. 2.89PCh. 2 - Prob. 2.90PCh. 2 - Prob. 2.91PCh. 2 - Prob. 2.92PCh. 2 - Prob. 2.93PCh. 2 - Prob. 2.94PCh. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - Prob. 2.97PCh. 2 - Prob. 2.98PCh. 2 - Prob. 2.99PCh. 2 - Prob. 2.100PCh. 2 - Prob. 2.101P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY